Skip to main content
Log in

Effect of AcAc/Al molar ratio on morphological and electrical properties of spray-coated Al2O3 thin films

  • Original Paper - Condensed Matter
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We present a spray pyrolysis method that can form amorphous Al2O3 thin films for dielectric applications using low-cost precursor materials. The effect of the precursor molar ratios on morphological and electrical properties of spray-coated Al2O3 thin films was studied. For a low molar ratio of acetylacetone (AcAc) to Al ions (AcAc/Al), inhomogeneous morphology with the formation of large particles was observed. The increase in AcAc/Al improves the coverage of Al by AcAc molecules, which prevents the premature solidification of Al ions, resulting in compact films with smooth surfaces. On the contrary, excessive AcAc for the high AcAc/Al leaves cracks in the films due to the evaporation of AcAc during film deposition. Electrical measurements on metal–insulator-metal (MIM) structures showed consistent results, and superior dielectric performance with sufficiently low leakage current was observed for the optimized AcAc/Al values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K.S. Shamala, L.C.S. Murthy, M.C. Radhakrishna, K.N. Rao, Characterization of Al2O3 thin films prepared by spray pyrolysis method for humidity sensor. Sens Actuators, A Phys. 135, 552–557 (2007). https://doi.org/10.1016/j.sna.2006.10.004

    Article  Google Scholar 

  2. Y.S. Chaug, N. Roy, Reactions at the aluminum oxide-ferrite interface. Thin Solid Films 193–194, 959–964 (1990). https://doi.org/10.1016/0040-6090(90)90250-H

    Article  ADS  Google Scholar 

  3. P. Katiyar, C. Jin, R.J. Narayan, Electrical properties of amorphous aluminum oxide thin films. Acta Mater. 53, 2617–2622 (2005). https://doi.org/10.1016/j.actamat.2005.02.027

    Article  ADS  Google Scholar 

  4. C. Avis, J. Jang, High-performance solution processed oxide TFT with aluminum oxide gate dielectric fabricated by a sol-gel method. J. Mater. Chem. 21, 10649–10652 (2011). https://doi.org/10.1039/c1jm12227d

    Article  Google Scholar 

  5. J.S. Daubert, G.T. Hill, H.N. Gotsch, A.P. Gremaud, J.S. Ovental, P.S. Williams, C.J. Oldham, G.N. Parsons, Corrosion protection of copper using Al2O3, TiO2, ZnO, HfO2, and ZrO2 Atomic layer deposition. ACS Appl. Mater. Interfaces. 9, 4192–4201 (2017). https://doi.org/10.1021/acsami.6b13571

    Article  Google Scholar 

  6. A. Mavrič, M. Valant, C. Cui, Z.M. Wang, Advanced applications of amorphous alumina: from nano to bulk. J. Non. Cryst. Solids. 521, 119493 (2019). https://doi.org/10.1016/j.jnoncrysol.2019.119493

    Article  Google Scholar 

  7. S. Vyas, A.D.D. Dwivedi, R.D. Dwivedi, Effect of gate dielectric on the performance of ZnO based thin film transistor. Superlattices. Microstruct. 120, 223–234 (2018). https://doi.org/10.1016/j.spmi.2018.05.040

    Article  ADS  Google Scholar 

  8. E.S.H. Kang, S. Chen, V. Đerek, C. Hägglund, E.D. Głowacki, M.P. Jonsson, E.S.H. Kang, Charge transport in phthalocyanine thin-film transistors coupled with Fabry-Perot cavities. J. Mater. Chem. C. 9, 2368–2374 (2021). https://doi.org/10.1039/d0tc05418f

    Article  Google Scholar 

  9. T.J. Myers, J.A. Throckmorton, R.A. Borrelli, M. O’Sullivan, T. Hatwar, S.M. George, Smoothing surface roughness using Al2O3 atomic layer deposition. Appl. Surf. Sci. 569, 150878 (2021). https://doi.org/10.1016/j.apsusc.2021.150878

    Article  Google Scholar 

  10. J.C. Ding, T.F. Zhang, R.S. Mane, K.H. Kim, M.C. Kang, C.W. Zou, Q.M. Wang, Low-temperature deposition of nanocrystalline Al2O3 films by ion source-assisted magnetron sputtering. Vacuum 149, 284–290 (2018). https://doi.org/10.1016/j.vacuum.2018.01.009

    Article  ADS  Google Scholar 

  11. X. Duan, N.H. Tran, N.K. Roberts, R.N. Lamb, Single-source chemical vapor deposition of clean oriented Al2O3 thin films. Thin Solid Films 517, 6726–6730 (2009). https://doi.org/10.1016/j.tsf.2009.05.032

    Article  ADS  Google Scholar 

  12. B.P. Dhonge, T. Mathews, S.T. Sundari, C. Thinaharan, M. Kamruddin, S. Dash, A.K. Tyagi, Spray pyrolytic deposition of transparent aluminum oxide (Al 2 O 3) films. Appl. Surf. Sci. 258, 1091–1096 (2011). https://doi.org/10.1016/j.apsusc.2011.09.040

    Article  ADS  Google Scholar 

  13. B. Hu, M. Yao, P. Yang, J. Chen, X. Yao, Preparation of Al2O3 dense films using sol derived from Al(NO3)3·9H2O. Mater. Technol. 29, 47–51 (2014). https://doi.org/10.1179/1753555713Y.0000000093

    Article  Google Scholar 

  14. D. Perednis, L.J. Gauckler, Solid oxide fuel cells with electrolytes prepared via spray pyrolysis. Solid State Ionics 166, 229–239 (2004). https://doi.org/10.1016/j.ssi.2003.11.011

    Article  Google Scholar 

  15. A. Amiri Zarandi, A. Khosravi, M. Dehghani, N. Taghavinia, All-spray multilayer transparent electrode based on Ag nanowires: improved adhesion and thermal/chemical stability. J. Mater. Sci. Mater. Electron. 31, 14078–14087 (2020). https://doi.org/10.1007/s10854-020-03962-y

    Article  Google Scholar 

  16. M. Dehghani, E. Parvazian, N.A. Tehrani, N. Taghavinia, M. Samadpour, A novel low-temperature growth of uniform CuInS2 thin films and their application in selenization/sulfurization-free CuInS2 solar cells. Mater. Today Commun. 26, 102050 (2021). https://doi.org/10.1016/j.mtcomm.2021.102050

    Article  Google Scholar 

  17. H. Yu, J. Wang, L. Liu, K. Sheng, Demonstration and characterization of 500 V MIM capacitor with Al2O3 dielectric layer for power integrated circuits. Solid. State. Electron. 186, 108167 (2021). https://doi.org/10.1016/j.sse.2021.108167

    Article  Google Scholar 

  18. R.L. Kozodoy, J.A. Harrington, Solgel alumina coating for hollow waveguide delivery of CO_2 laser radiation. Appl. Opt. 34, 7840 (1995). https://doi.org/10.1364/ao.34.007840

    Article  ADS  Google Scholar 

  19. K. Vanbesien, P. De Visschere, P.F. Smet, D. Poelman, Electrical properties of Al2O3 films for TFEL-devices made with sol-gel technology. Thin Solid Films 514, 323–328 (2006). https://doi.org/10.1016/j.tsf.2006.02.034

    Article  ADS  Google Scholar 

  20. B. Hu, E. Jia, B. Du, Y. Yin, A new sol-gel route to prepare dense Al2O3 thin films. Ceram. Int. 42, 16867–16871 (2016). https://doi.org/10.1016/j.ceramint.2016.07.181

    Article  Google Scholar 

  21. N. Bahlawane, Novel sol-gel process depositing α-Al2O3 for the improvement of graphite oxidation-resistance. Thin Solid Films 396, 126–130 (2001). https://doi.org/10.1016/S0040-6090(01)01259-7

    Article  ADS  Google Scholar 

  22. P.K. Nayak, J.A. Caraveo-Frescas, Z. Wang, M.N. Hedhili, Q.X. Wang, H.N. Alshareef, Thin film complementary metal oxide semiconductor (CMOS) device using a single-step deposition of the channel layer. Sci. Rep. 4, 4672 (2014). https://doi.org/10.1038/srep04672

    Article  ADS  Google Scholar 

  23. E. Carlos, J. Leppäniemi, A. Sneck, A. Alastalo, J. Deuermeier, R. Branquinho, R. Martins, E. Fortunato, Printed, highly stable metal oxide thin-film transistors with ultra-thin high-κ oxide dielectric. Adv. Electron. Mater. 6, 1901071 (2020). https://doi.org/10.1002/aelm.201901071

    Article  Google Scholar 

  24. Y.Q. Wu, H.C. Lin, P.D. Ye, G.D. Wilk, Current transport and maximum dielectric strength of atomic-layerdeposited ultrathin Al2O3 on GaAs. Appl. Phys. Lett. 90, 072105 (2007). https://doi.org/10.1063/1.2535528

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by Chungbuk National University Korea National University Development Project (2020)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mehdi Dehghani or Evan S. Hyunkoo Kang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehghani, M., Lee, H., Shahbazi, S. et al. Effect of AcAc/Al molar ratio on morphological and electrical properties of spray-coated Al2O3 thin films. J. Korean Phys. Soc. 81, 669–674 (2022). https://doi.org/10.1007/s40042-022-00604-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-022-00604-w

Keywords

Navigation