Skip to main content
Log in

Mechanism analysis of traffic congestion at sag section of the tunnel

  • Original Paper - Cross-Disciplinary Physics and Related Areas of Science and Technology
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Sag sections are segments of the expressway where the slope changes greatly from downward to upward. In the expressway networks, sag sections are usually the bottleneck of traffic. Sag sections have become an important inducement of traffic congestion for its special geometric characteristics. However, the intrinsic mechanism of traffic congestion on sag sections is still unclear, especially the congestion in the tunnels. To describe the traffic flow of different road conditions, a dynamic optimal velocity function is proposed. Then, coupled with the proposed function, a new lattice hydrodynamic model is developed to reveal the influence of sag on the stability of traffic flow in the tunnel. The linear stability condition is further obtained to analyze the potential effects of sag on the dynamics of traffic flow. The modified Korteweg-de Vrie (mKdV) equation is also derived by using perturbation theory, and the corresponding kink-antikink soliton solution is obtained. Finally, the evolution process of traffic flow during the sag section is demonstrated by numerical simulation. It is suggested that the downhill section sag worse the stability of traffic flow, while the uphill section could stabilize the traffic flow, which is consistent with the theoretical analysis well. In addition, we also study the evolution laws of density waves under different disturbances in the metastable region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. T.Q. Tang, H.J. Huang, S.G. Zhao, G. Xu, Int. J. Mod. Phys. B. 23, 743 (2009). https://doi.org/10.1142/S0217979209051966

    Article  ADS  Google Scholar 

  2. L.J. Zheng, C. Tian, D.H. Sun, W.N. Liu, Nonlin. Dyn. 70, 1205 (2012). https://doi.org/10.1007/s11071-012-0524-x

    Article  Google Scholar 

  3. G.H. Peng, R.J. Cheng, Physica A. 392, 3563 (2013). https://doi.org/10.1016/j.physa.2013.04.011

    Article  ADS  MathSciNet  Google Scholar 

  4. X.P. Li, J.X. Cui, S. An, M. Parsafard, Transport. Res. B. 70, 319 (2014). https://doi.org/10.1016/j.trb.2014.09.014

    Article  Google Scholar 

  5. R. Jiang, M.B. Hu, H.M. Zhang, Z.Y. Gao, B. Jia, Q.S. Wu, Transport. Res. B. 80, 338 (2015). https://doi.org/10.1016/j.trb.2015.08.003

    Article  Google Scholar 

  6. S.W. Yu, Z.K. Shi, Measurement 64, 34 (2015). https://doi.org/10.1016/j.measurement.2014.12.036

    Article  ADS  Google Scholar 

  7. G.H. Peng, W.Z. Lu, H.D. He, Z.H. Gu, Commun. Nonlin. Sci. 40, 197 (2016). https://doi.org/10.1016/j.cnsns.2016.04.024

    Article  Google Scholar 

  8. R.J. Cheng, H.X. Ge, J.F. Wang, Phys. Lett. A. 381, 2792 (2017). https://doi.org/10.1016/j.physleta.2017.06.047

    Article  ADS  MathSciNet  Google Scholar 

  9. T.Q. Tang, Z.Y. Yi, J. Zhang, T. Wang, J.Q. Leng, Physica A. 496, 399 (2018). https://doi.org/10.1016/j.physa.2018.01.005

    Article  ADS  MathSciNet  Google Scholar 

  10. Q.T. Zhai, H.X. Ge, R.J. Cheng, Physica A. 490, 774 (2018). https://doi.org/10.1016/j.physa.2017.08.152

    Article  MathSciNet  Google Scholar 

  11. J.F. Tian, G.Y. Li, M. Treiber, R. Jiang, N. Jia, S. Ma, Transport. Res. B. 93, 560 (2016). https://doi.org/10.1016/j.trb.2016.08.008

    Article  Google Scholar 

  12. J.F. Tian, B. Jia, S. Ma, C. Zhu, R. Jiang, Y. Ding, Transportation Sci. 51, 807 (2016). https://doi.org/10.48550/arXiv.1503.05986

    Article  Google Scholar 

  13. D. Helbing, M. Treiber, Phys. Rev. Lett. 81, 3042 (1998). https://doi.org/10.1103/PhysRevLett.81.3042

    Article  ADS  Google Scholar 

  14. G.H. Peng, W. Song, Y.J. Peng, S.H. Wang, Physica A. 398, 76 (2014). https://doi.org/10.1016/j.physa.2013.12.015

    Article  ADS  MathSciNet  Google Scholar 

  15. R.J. Cheng, H.X. Ge, J.F. Wang, Physica A. 481, 52 (2017). https://doi.org/10.1016/j.physa.2017.04.004

    Article  ADS  MathSciNet  Google Scholar 

  16. R.J. Cheng, H.X. Ge, J.F. Wang, Phys. Lett. A. 381, 1302 (2017). https://doi.org/10.1016/j.physleta.2017.02.018

    Article  ADS  MathSciNet  Google Scholar 

  17. T.Q. Tang, H.J. Huang, H.Y. Shang, Physica A. 468, 322 (2016). https://doi.org/10.1016/j.physa.2016.10.092

    Article  ADS  Google Scholar 

  18. R.J. Cheng, H.X. Ge, J.F. Wang, Phys. Lett. A. 381, 2608 (2017). https://doi.org/10.1016/j.physleta.2017.06.008

    Article  ADS  MathSciNet  Google Scholar 

  19. Y. Xue, Y. Guo, Y. Shi, L.Z. Lv, H.D. He, Nonlin. Dyn. 88, 145 (2017). https://doi.org/10.1016/j.physleta.2017.06.008

    Article  Google Scholar 

  20. R.J. Cheng, H.X. Ge, J.F. Wang, Appl. Math. Comput. 332, 493 (2018). https://doi.org/10.1016/j.amc.2018.03.077

    Article  MathSciNet  Google Scholar 

  21. G.H. Peng, S.H. Yang, H.Z. Zhao, Phys. Lett. A. 382, 2595 (2018). https://doi.org/10.1016/j.physleta.2018.06.039

    Article  ADS  Google Scholar 

  22. T. Nagatani, Physica A. 261, 599 (1998). https://doi.org/10.1016/S0378-4371(98)00347-1

    Article  ADS  MathSciNet  Google Scholar 

  23. T. Nagatani, Physica A. 264, 581 (1999). https://doi.org/10.1016/S0378-4371(98)00466-X

    Article  ADS  Google Scholar 

  24. G. Zhang, D.H. Sun, H. Liu, D. Chen, Physica A. 486, 806 (2017). https://doi.org/10.1016/j.physa.2017.05.050

    Article  ADS  MathSciNet  Google Scholar 

  25. G.H. Peng, X.Q. Li, K.L. Fang, Physica A. 486, 814 (2018). https://doi.org/10.1016/j.physa.2017.05.061

    Article  Google Scholar 

  26. D.H. Sun, G. Zhang, M. Zhao, S.L. Cheng, J.D. Cao, Commun. Nonlin. Sci. 56, 287 (2018). https://doi.org/10.1016/j.cnsns.2017.08.004

    Article  Google Scholar 

  27. T. Wang, R.D. Zang, K.Y. Xu, J. Zhang, Physica A. 526, 120711 (2019). https://doi.org/10.1016/j.physa.2019.03.076

    Article  Google Scholar 

  28. J. Zhang, K.Y. Xu, S.B. Li, T. Wang, Physica A. 551, 124249 (2020). https://doi.org/10.1016/j.physa.2020.124249

    Article  MathSciNet  Google Scholar 

  29. A.K. Gupta, P. Redhu, Physica A. 392, 5622 (2013). https://doi.org/10.1016/j.physa.2013.07.040

    Article  ADS  Google Scholar 

  30. A.K. Gupta, P. Redhu, Nonli. Dyn. 76, 1001 (2014). https://doi.org/10.1007/s11071-013-1183-2

    Article  Google Scholar 

  31. G.H. Peng, S.H. Yang, H.Z. Zhao, L. Qing, Int. J. Mod. Phys. C. 29, 1850083 (2018). https://doi.org/10.1142/S012918311850083

    Article  ADS  Google Scholar 

  32. Y.Y. Chang, Z.T. He, R.J. Chen, Physica A. 514, 522 (2019). https://doi.org/10.1016/j.physa.2018.09.097

    Article  ADS  MathSciNet  Google Scholar 

  33. Q.Y. Wang, R.J. Cheng, H.X. Ge, Physica A. 559, 125023 (2020). https://doi.org/10.1016/j.physa.2020.125023

    Article  MathSciNet  Google Scholar 

  34. H.X. Ge, R.J. Cheng, Physica A. 387, 6952 (2008). https://doi.org/10.1016/j.physa.2008.05.060

    Article  ADS  Google Scholar 

  35. P. Redhu, A.K. Gupta, Commun. Nonlin. Sci. 27, 263 (2015). https://doi.org/10.1016/j.cnsns.2015.03.015

    Article  Google Scholar 

  36. P. Redhu, A.K. Gupta, Physica A. 445, 150 (2016). https://doi.org/10.1016/j.physa.2015.10.051

    Article  ADS  MathSciNet  Google Scholar 

  37. K. Komada, S. Masukura, T. Nagatani, Physica A. 388, 2880 (2009). https://doi.org/10.1016/j.physa.2009.03.029

    Article  ADS  Google Scholar 

  38. H.X. Ge, R.J. Cheng, S.M. Lo, Commun. Theor. Phys. 62, 259 (2014). https://doi.org/10.1088/0253-6102/62/2/13

    Article  ADS  Google Scholar 

  39. A.K. Gupta, S. Sharma, P. Redhu, Commun. Theor. Phys. 62, 393 (2014). https://doi.org/10.1088/0253-6102/62/3/17

    Article  Google Scholar 

  40. J.L. Cao, Z.K. Shi, Commun. Nonlin. Sci. 33, 1 (2016). https://doi.org/10.1016/j.cnsns.2015.08.025

    Article  Google Scholar 

  41. R. Kaur, S. Sharma, Physica A. 471, 59 (2017). https://doi.org/10.1016/j.physa.2016.11.116

    Article  ADS  Google Scholar 

  42. R. Kaur, S. Sharma, Physica A. 499, 110 (2018). https://doi.org/10.1016/j.physa.2017.12.101

    Article  ADS  MathSciNet  Google Scholar 

  43. H.X. Ge, R.J. Cheng, Q.Y. Wang, Phys. Lett. A. 383, 1879 (2019). https://doi.org/10.1016/j.physleta.2019.03.019

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 71971125, 72222021) and The Natural Science Foundation of Shandong Province (Grant No. ZR2021MG026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, J., Wang, T., Cui, F. et al. Mechanism analysis of traffic congestion at sag section of the tunnel. J. Korean Phys. Soc. 81, 796–808 (2022). https://doi.org/10.1007/s40042-022-00599-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-022-00599-4

Keywords

Navigation