Skip to main content
Log in

Separate calculations of the two currents driven by electron cyclotron waves

  • Original Paper - Fluids, Plasma and Phenomenology
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The expressions of both the Fisch–Boozer and Ohkawa currents are constructed, and a feasible and efficient calculation method is given. Simulation results of the Fokker–Plank code verify the expressions and the calculation method. We calculate and separate the Ohkawa and Fisch–Boozer currents on a single magnetic flux surface of the off-axis position. The Ohkawa current drive mechanism can be made dominant over the Fisch–Boozer mechanism to achieve a high driven current. This can be done by adjusting the parameters of electron cyclotron waves to make the power deposited in the off-axis region of the low-field side.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. T. Ohkawa. General Atomics Report. GA-A13847, No. PB2000–108008 (1976).

  2. N.J. Fisch, A.H. Boozer, Phys. Rev. Lett. 45, 720 (1980)

    Article  ADS  Google Scholar 

  3. N.J. Fisch, Rev. Mod. Phys. 59, 175 (1987)

    Article  ADS  Google Scholar 

  4. D.F.H. Start, N.R. Ainsworth, J.G. Cordey, T. Edlington, W.H.W. Fletcher, M.F. Payne, T.N. Todd, Phys. Rev. Lett. 48, 624 (1982)

    Article  ADS  Google Scholar 

  5. T.C. Luce, Y.R. Lin-Liu, R.W. Harvey, G. Giruzzi, P.A. Politzer, B.W. Rice, J.M. Lohr, C.C. Petty, R. Prater, Phys. Rev. Lett. 29, 4550 (1999)

    Article  ADS  Google Scholar 

  6. S. Coda, S. Alberti, P. Blanchard, T.P. Goodman, M.A. Henderson, P. Nikkola, Y. Peysson, O. Sauter, Nucl. Fusion 43, 136 (2003)

    Article  Google Scholar 

  7. T. Suzuki, S. Ide, K. Hamamatsu, A. Isayama, T. Fujita, C.C. Petty, Y. Ikeda, K. Kajiwara, O. Naito, M. Seki, S. Moriyama, T. Hatae, T. Kondoh, the JT-60 Team, Nucl. Fusion 44, 699 (2004)

    Article  ADS  Google Scholar 

  8. O. Sauter, C. Angioni, S. Coda, P. Gomez, T.P. Goodman, M.A. Henderson, F. Hofmann, J.-P. Hogge, J.-M. Moret, P. Nikkola, Z.A. Pietrzyk, H. Weisen, S. Alberti, K. Appert, J. Bakos, R. Behn, P. Blanchard, P. Bosshard, R. Chavan, I. Condrea, A. Degeling, B.P. Duval, D. Fasel, J.-Y. Favez, A. Favre, I. Furno, R.R. Kayruthdinov, P. Lavanchy, J.B. Lister, X. Llobet, V.E. Lukash, P. Gorgerat, P.-F. Isoz, B. Joye, J.-C. Magnin, A. Manini, B. Marlétaz, P. Marmillod, Y.R. Martin, A. Martynov, J.-M. Mayor, E. Minardi, J. Mlynar, P.J. Paris, A. Perez, Y. Peysson, V. Piffl, R.A. Pitts, A. Pochelon, H. Reimerdes, J.H. Rommers, E. Scavino, A. Sushkov, G. Tonetti, M.Q. Tran, A. Zabolotsky, Phys. Plasmas 8, 2199 (2011)

    Article  ADS  Google Scholar 

  9. S. Coda, T.P. Goodman, M.A. Henderson, F. Hofmann, Z.A. Pietrzyk, O. Sauter, S. Alberti, C. Angioni, K. Appert, R. Behn, P. Blanchard, P. Bosshard, R. Chavan, A. Degeling, B.P. Duval, D. Fasel, A. Favre, I. Furno, P. Gomez, P. Gorgerat, J.-P. Hogge, P.-F. Isoz, B. Joye, P. Lavanchy, J.B. Lister, X. Llobet, J.-C. Magnin, A. Manini, B. Marlétaz, P. Marmillod, Y. Martin, A. Martynov, J.-M. Mayor, J. Mlynar, J.-M. Moret, P. Nikkola, P.J. Paris, A. Perez, Y. Peysson, R.A. Pitts, A. Pochelon, H. Reimerdes, J.H. Rommers, E. Scavino, A. Sushkov, G. Tonetti, M.Q. Tran, H. Weisen, A. Zabolotsky, Plasma Phys. Control. Fusion 42, B311 (2000)

    Article  ADS  Google Scholar 

  10. T. Suzuki, S. Ide, T. Oikawa, Y. Ikeda, K. Kajiwara, A. Isayama, T. Fujita, K. Hamamatsu, the JT-60 Team, Plasma Phys. Control. Fusion 44, 1 (2002)

    Article  ADS  Google Scholar 

  11. C.C. Petty, R. Prater, J. Lohr, T.C. Luce, W.R. Fox, R.W. Harvey, J.E. Kinsey, L.L. Lao, M.A. Makowski, Nucl. Fusion 42, 1366 (2002)

    Article  ADS  Google Scholar 

  12. R.J. La Haye, J. Lohr, T.C. Luce, C.C. Petty, R. Prater, E.J. Strait, D.P. Brennan,1 J.R. Ferron, D.A. Humphreys, L.L. Lao, and M.L. Walker. General Atomics Report GA–A23701, (2001)

  13. M. Murakami, M.R. Wade, J.C. DeBoo, C.M. Greenfield, T.C. Luce, M.A. Makowski, C.C. Petty, G.M. Staebler, T.S. Taylor, M.E. Austin, D.R. Baker, R.V. Budny, K.H. Burrell, T.A. Casper, M. Choi, J.R. Ferron, A.M. Garofalo, I.A. Gorelov, R.J. Groebner, R. La Haye, A.W. Hyatt, R.J. Jayakumar, K. Kajiwara, J.E. Kinsey, L.L. Lao, J. Lohr, D. McCune, R.I. Pinsker, P.A. Politzer, R. Prater, H.E. St. John, W.P. West, Phys. Plasmas 10, 1691 (2003)

    Article  ADS  Google Scholar 

  14. S. Yamamoto, K. Nagasaki, S. Kobayashi, K. Nagaoka, A. Cappa, H. Okada, T. Minami, S. Kado, S. Ohshima, S. Konoshima, Y. Nakamura, A. Ishizawa, G.M. Weir, N. Kenmochi, Y. Ohtani, X. Lu, Y. Tawada, D. Kokubu, T. Mizuuchi, Nucl. Fusion 57, 126065 (2017)

    Article  ADS  Google Scholar 

  15. R. Prater, Phys. Plasmas 5, 2349 (2004)

    Article  ADS  Google Scholar 

  16. S. Cirant, Fusion Sci. Technol. 53, 12 (2007)

    Article  Google Scholar 

  17. C.F.F. Karney, N.J. Fisch, Phys. Fluids 28, 116 (2008)

    Article  ADS  Google Scholar 

  18. G. Giruzzi, M. Zabiégo, T.A. Gianakon, X. Garbet, A. Cardinali, S. Bernabei, Nucl. Fusion 39, 107 (1999)

    Article  ADS  Google Scholar 

  19. T.C. Luce, Y.R. Lin-Liu, R.W. Harvey, G. Giruzzi, P.A. Politzer, B.W. Rice, J.M. Lohr, C.C. Petty, R. Prater, Phys. Rev. Lett 83, 4550 (1999)

    Article  ADS  Google Scholar 

  20. C.C. Petty, R. Prater, T.C. Luce, R.A. Ellis, R.W. Harvey, J.E. Kinsey, L.L. Lao, J. Lohr, M.A. Makowski, K.-L. Wong, Nucl. Fusion 43, 700 (2003)

    Article  ADS  Google Scholar 

  21. G. Taylor, P.C. Efthimion, C.E. Kessel, R.W. Harvey, A.P. Smirnov, N.M. Ershov, M.D. Carter, C.B. Forest, Phys. Plasmas 11, 4733 (2004)

    Article  ADS  Google Scholar 

  22. R.W. Harvey, G. Taylor, Phys. Plasmas 12, 052509 (2005)

    Article  ADS  Google Scholar 

  23. J. Urban, J. Decker, Y. Peysson, J. Preinhaelter, V. Shevchenko, G. Taylor, L. Vahala, G. Vahala, Nucl. Fusion 51, 083050 (2011)

    Article  ADS  Google Scholar 

  24. P.W. Zheng, X.Y. Gong, X.Q. Lu, L.H. He, J.J. Cao, Q.H. Huang, S. Deng, Nucl. Fusion 58, 036010 (2018)

    Article  ADS  Google Scholar 

  25. P.W. Zheng, X.Y. Gong, X.Q. Lu, J.J. Cao, L.H. He, Q.H. Huang, S. Deng, J.F. Lin, Y.J. Zhong, Phys. Plasmas 25, 072501 (2018)

    Article  ADS  Google Scholar 

  26. P.W. Zheng, X.Y. Gong, X.H. Yin, L.H. He, X.Q. Lu, J.J. Cao, Q.H. Huang, S. Deng, J.F. Lin, Y.J. Zhong, L. Yin, Nucl. Fusion 59, 054003 (2019)

    Article  ADS  Google Scholar 

  27. J. Decker, AIP Conf. Proc. 694, 447 (2003)

    Article  ADS  Google Scholar 

  28. P.W. Zheng, X.Y. Gong, J. Yu, D. Du, Plasma Sci. Technol 16, 1000 (2014)

    Article  ADS  Google Scholar 

  29. J.C. Li, X.Y. Gong, J.Q. Dong, P.W. Zheng, S.D. Song, Q.D. Gao, D. Du, Phys. Plasmas 22, 062512 (2015)

    Article  ADS  Google Scholar 

  30. J.C. Li, X.Y. Gong, J.Q. Dong, J. Wang, L. Yin, Numerical analysis of the optimized performance of the electron cyclotron wave system in a hl-2m tokamak. Chin. Phys. B 4, 25 (2016)

    Google Scholar 

  31. A. Simonetto, M. Shoucri, D. Farina, Y. Peysson, E. Lazzaro. IFP-CNR Internal Report FP00/08, (2000)

  32. R. W. Harvey and M. G. McCoy, IAEA TCM on Advances in Simulation and Modeling of Thermonuclear Plasmas, pp. 489, (1992)

  33. J.C. Li, X.Y. Gong, J.Q. Dong, J. Wang, N. Zhang, P.W. Zheng, C.Y. Yin, Current drive with combined electron cyclotron wave and high harmonic fast wave in tokamak plasmas. Phys. Plasmas 12, 23 (2016)

    Google Scholar 

  34. C.F. Kennel, F. Engelmann, Phys. Fluids 9, 2377 (1966)

    Article  ADS  Google Scholar 

  35. I. Lerche, Phys. Fluids 11, 1720 (1968)

    Article  ADS  Google Scholar 

  36. S. Deng, P.W. Zheng, L.H. He, Q.H. Huang, X.Y. Gong, Atom. Energy Sci. Technol. 51, 7 (2017)

    Google Scholar 

  37. J.C. Li, J.Q. Dong, S.F. Liu, Effects of trapped electrons on the ion temperature gradient mode in tokamak plasmas with hollow density profiles[J]. Plasma Sci. Technol. 5, 22 (2020)

    Google Scholar 

  38. J.C. Li, J.Q. Dong, X.Q. Ji, Y.J. Hu, Neoclassical tearing mode stabilization by electron cyclotron current drive for HL-2M tokamak. Chin. Phys. B 7, 30 (2021)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China, Grant Number: 2017YFE0302000; the National Natural Science Foundations of China Grant Number: 12075114; the Hunan Nuclear Fusion International Science and Technology Innovation Cooperation Base, Grant Number: 2018WK4009; the Key Laboratory of Magnetic Confinement Nuclear Fusion Research in Hengyang, Grant Number: 2018KJ108; and the Natural Science Foundation of Hunan Province, Grant Number: 2020JJ4075.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-yu Gong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, S., Zheng, Pw., Gong, Xy. et al. Separate calculations of the two currents driven by electron cyclotron waves. J. Korean Phys. Soc. 81, 739–749 (2022). https://doi.org/10.1007/s40042-022-00586-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-022-00586-9

Keywords

Navigation