Skip to main content
Log in

Theoretical study of photo-stimulated thermo-magnetoelectric effects in two-dimensional compositional superlattices using quantum kinetic equation

  • Original Paper - Condensed Matter
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

An Erratum to this article was published on 19 September 2022

This article has been updated

Abstract

Two scattering mechanisms, including the confined electron (CE)–confined acoustic phonon (CAP) scattering and the CE–confined optical phonon (COP) scattering, have been considered in the theoretical problem of photo-stimulated thermo-magnetoelectric effects (TME) occurring in two-dimensional compositional semiconductor superlattices (CSS). The quantum kinetic equation (QKE) method is applied to calculate the characteristic quantities of two typical photo-stimulated TME, namely, the Ettingshausen effect (EE) and the Peltier effect (PE). The obtained analytical results show that the external fields (the magnetic field B, the dc electric field E, the frequency \(\omega\) and the amplitude \(E_0\) of the laser radiation), the period of superlattice d as well as the temperature of the systems T are quantities that govern the quantum Ettingshausen coefficient (qEC) and the quantum Peltier coefficient (qPC).The presence of m-quantum number specifying phonon confinement in the analytical expression of the qEC and the qPC is as a demonstration for the influence of size effect on both the EE and the PE. The results are numerically estimated and graphed for the \(\mathrm{GaAs}/\mathrm{Al}_{0.25}\mathrm{Ga}_{0.75}\mathrm{As}\) CSS to indicate the dependence of the qEC and the qPC on aforementioned quantities. Moreover, the confined phonons contribute to the magneto-phonon-photon resonance condition (MPPRC) in CSS. Therefore, the behaviors of the photo-stimulated TME within phonon confinement are different from the case of bulk phonons. Due to the confinement of an acoustic phonon, the Shubnikov–de Hass oscillations are observed with the changes in the amplitude and the posture when investigating the dependence of the qEC and the qPC on the magnetic field and the frequency of the laser radiation (LR). Meanwhile, resonance peaks of these coefficients are relocated under the influence of a COP. Besides, the confinement of phonons causes the changes in the magnitude of both the qEC and the qPC compared to the case of unconfined phonons. The obtained results hold true for all temperatures and contribute to perfecting the theory of the quantum TME in the low-dimensional semiconductor systems (LDSS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

References

  1. B.V. Paranjape, J.S. Levinger, Phys. Rev. 120, 437 (1960)

    Article  ADS  Google Scholar 

  2. V.L. Malevich, E.M. Epshtein, J. Sov. Phys. 19, 230 (1976)

    Article  Google Scholar 

  3. F.M. Hashimzade, K.A. Hasanov, B.H. Mehdiyev, S. Cakmak, Phys. Scr. 81, 015701 (2010)

    Article  ADS  Google Scholar 

  4. Y.G. Gurevich, J.E. Velazquez-Perez, Peltier Effect in Semiconductors (Wiley, New York, 2014)

    Book  Google Scholar 

  5. M. Mierzejewski, D. Crivelli, P. Prelovsek, Phys. Rev. B 90, 075124 (2014)

    Article  ADS  Google Scholar 

  6. O.E. Raichev, Phys. Rev. B 91, 235307 (2015)

    Article  ADS  Google Scholar 

  7. V.A. Shchukin, B. Dieter, Rev. Mod. Phys. 71, 1125 (1999)

    Article  ADS  Google Scholar 

  8. J. Stangl, G. Bauer, Rev. Mod. Phys. 76, 725 (2004)

    Article  ADS  Google Scholar 

  9. N. Nishiguchi, Phys. Rev. B 52, 5279 (1995)

    Article  ADS  Google Scholar 

  10. A. Svizhenko, A. Balandin, S. Bandyopadhyay, M.A. Stroscio, Phys. Rev. B 57, 4687 (1998)

    Article  ADS  Google Scholar 

  11. N.D. Hien, L. Dinh, V.T. Lam, T.C. Phong, J. Phys. Conf. Ser. 726, 012012 (2016)

    Article  Google Scholar 

  12. V.B. Campos, S.D. Sarma, M.A. Stroscio, Phys. Rev. B 46, 3849 (1992)

    Article  ADS  Google Scholar 

  13. A.D. Levin, Z.S. Momtaz, G.M. Gusev, O.E. Raichev, A.K. Bakarov, Phys. Rev. Lett. 115, 206801 (2015)

    Article  ADS  Google Scholar 

  14. B.D. Hoi, N.Q. Bau, N.D. Nam, Int. J. Mod. Phys. B 30, 165004 (2016)

    Article  Google Scholar 

  15. D. Abouelaoualim, Pranama J. Phys. 66, 455 (2006)

    Article  ADS  Google Scholar 

  16. I. Gerdova, A. Hache, Opt. Commun. 246, 205 (2005)

    Article  ADS  Google Scholar 

  17. I. Karabulut, S. Baskoutas, J. Appl. Phys. 103, 073512 (2008)

    Article  ADS  Google Scholar 

  18. N.Q. Bau, L.T. Hung, N.D. Nam, J. Electromagn. Waves Appl. 24, 1751 (2010)

    Article  Google Scholar 

  19. N.Q. Bau, D.T. Hang, D.T. Long, J. Korean Phys. Soc. 75, 1004 (2019)

    Article  ADS  Google Scholar 

  20. A.P. Silin, Sov. Phys. Usp. 28, 972 (1985)

    Article  ADS  Google Scholar 

  21. K. Ploog, H.D. Gottfried, Adv. Phys. 32, 285 (1993)

    Article  Google Scholar 

  22. B. Mitra, K.P. Ghatak, Sol. Stat. Sol. 164, K13 (1991)

    Article  ADS  Google Scholar 

  23. L. Esaki, R. Tsu, IBM J. Res. Dev. 14, 61 (1970)

    Article  Google Scholar 

  24. S. Rudin, T. Reinecke, Phys. Rev. B 41, 7713 (1990)

    Article  ADS  Google Scholar 

  25. A.M. Paula, G. Weber, J. Appl. Phys. 77, 6306 (1995)

    Article  ADS  Google Scholar 

  26. P. Vasilopoulos, C.M. Van Vliet, J. Math. Phys. 25, 1391 (1984)

    Article  ADS  Google Scholar 

  27. P. Vasilopoulos, Phys. Rev. B 33, 8587 (1986)

    Article  ADS  Google Scholar 

  28. A. Zou, H. Xie, Mod. Phys. B 23, 3515 (2009)

    Article  ADS  Google Scholar 

  29. R.K.S. Wang, M. Huang, Phys. Rev. B 51, 1935 (1995)

    Article  ADS  Google Scholar 

  30. B. Kamran, M. Marie-Aude, K. Yakov, Phys. Rev. Lett. 98, 166602 (2007)

    Article  Google Scholar 

  31. D.T. Hang, N.V. Nhan, N.Q. Bau, Key Eng. Mater. 783, 93 (2018)

    Article  Google Scholar 

  32. N.Q. Bau, N.T.L. Quynh, C.T.V. Ba, L.T. Hung, J. Korean Phys. Soc. 77, 1 (2020)

    Article  Google Scholar 

  33. D.M. Mirlin, I.A. Merkulov, V.I. Perel, I.I. Reshina, A.A. Sirenko, Solid State Commun. 84, 1093 (1992)

    Article  ADS  Google Scholar 

  34. M. Zebarjadi, K. Esfarjani, A. Shakouri, Appl. Phys. Lett. 91, 122104 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research is financial supported by Vietnam National University, Hanoi Grant number QG.21.16.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Quang Bau.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The affiliation has been updated.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ba, C.T.V., Bau, N.Q., Quynh, N.T.L. et al. Theoretical study of photo-stimulated thermo-magnetoelectric effects in two-dimensional compositional superlattices using quantum kinetic equation. J. Korean Phys. Soc. 81, 757–769 (2022). https://doi.org/10.1007/s40042-022-00584-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-022-00584-x

Keywords

Navigation