Skip to main content
Log in

Strain and built-in potentials in wurtzite polar and non-polar InGaN/GaN quantum wires

  • Original Paper - Condensed Matter
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Strain and built-in potential distributions in c- and a-plane wurtzite (WZ) InGaN/GaN quantum wires (QWRs) are investigated using theory of continuum elasticity. The position dependence of \(\epsilon _{x'x'}\) and \(\epsilon _{z'z'}\) along \(x'\)-axis in a-plane QWR is shown to be similar to that along z-axis of \(\epsilon _{zz}\) and \(\epsilon _{xx}\) in c-plane QWR, respectively. \(\epsilon _{x'x'}\) along \(x'\)-axis in a-plane QWR suddenly change from compressive to tensile strain at the boundary between the QWR and the barrier. \(\epsilon _{z'z'}\) also experiences a relaxation along \(x'\)-axis and continuously decreases with increasing distance. The decrease in the built-in potential is observed in the nonpolar QWR, which could be attributed to crystal orientation effects on piezoelectric and elastic stiffness constants. We expect that the internal efficiency can be improved by using nonpolar a-plane QWRs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D. Bimberg, M. Grundmann, N.N. Ledentsov, Quantum Dot Heterostructure (Wiley, New York, 1999). (Ch. 1)

    Google Scholar 

  2. J. Piprek, Handbook of Optoelectronic Device Modeling and Simulation (CRC Press, London, 2017)

    Book  Google Scholar 

  3. Y. Arakawa, H. Sakaki, Appl. Phys. Lett. 40, 939 (1982)

    Article  ADS  Google Scholar 

  4. M. Asada, Y. Miyamoto, Y. Suematsu, Jpn. J. Appl. Phys. 24, L95 (1985)

    Article  ADS  Google Scholar 

  5. X. Yang, M. Arita, S. Kako, Y. Arakawa, Appl. Phys. Lett. 99, 113106 (2011)

    Article  ADS  Google Scholar 

  6. J. Müßener, L.ATh. Greif, S. Kalinowski, G. Callsen, P. Hille, J. Schörmann, M.R. Wagner, A. Schliwa, S. Martí-Sánchez, J. Arbiol, A. Hoffmann, M. Eickhoff, Nanoscale 10, 5591–5598 (2018)

    Article  Google Scholar 

  7. S. Choi, H.G. Song, S. Cho, Y.H. Cho, Nano Lett. 19, 8454 (2019)

    Article  ADS  Google Scholar 

  8. J. Renard, B. Amstatt, C. Bougerol, E. Bellet-Amalric, B. Daudin, B. Gayral, J. Appl. Phys. 104, 103528 (2008)

    Article  ADS  Google Scholar 

  9. H.-J. Choi, J.C. Johnson, R. He, S.-K. Lee, F. Kim, P. Pauzauskie, J. Goldberger, R.J. Saykally, P. Yang, J. Phys. Chem. B 107, 8721 (2003)

    Article  Google Scholar 

  10. H.-S. Yeo, K. Le, Y.C. Si, S.-H. Park, Y.-H. Cho, Sci. Rep. 10, 15371 (2020)

    Article  ADS  Google Scholar 

  11. A. Haque, H. Yagi, T. Sano, T. Maruyama, S. Arai, J. Appl. Phys. 94, 2018 (2003)

    Article  ADS  Google Scholar 

  12. G. Martin, A. Botchkarev, A. Rockett, H. Morkoç, Appl. Phys. Lett. 68, 2541 (1996)

    Article  ADS  Google Scholar 

  13. F. Bernardini, V. Fiorentini, D. Vanderbilt, Phys. Rev. B 56, 10024 (1997)

    Article  ADS  Google Scholar 

  14. Y.W. Kwon, H. Bang, The Finite Element Method Using Matlab (CRC Press, New York, 2000)

    MATH  Google Scholar 

  15. For example, see http://www.comsol.com/

  16. Andreev and O’Reilly, Phys. Rev. B 62, 15851 (2000)

  17. L. Robichaud, J.J. Krich, IEEE J. Photovolt. 12, 474 (2022)

    Article  Google Scholar 

  18. F. Boxberg, J. Tulkki, Rep. Progr. Phys. 70, 1425 (2007)

    Article  ADS  Google Scholar 

  19. J.M. Hinckley, J. Singh, Phys. Rev. B 42, 3546 (1990)

    Article  ADS  Google Scholar 

  20. J. F. Nye, Physical Properties of Crystals; Clarendon\(\cdot \)Oxford, England (1989)

  21. K.B. Hong, M.K. Kuo, Semicond. Sci. Technol. 28, 105006 (2013)

    Article  ADS  Google Scholar 

  22. M.A. Caro, S. Schulz, S.B. Healy, E.P. O’Reilly, J. Appl. Phys. 109, 084110 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2021R1F1A1048588).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seoung-Hwan Park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, SH., Ahn, D. Strain and built-in potentials in wurtzite polar and non-polar InGaN/GaN quantum wires. J. Korean Phys. Soc. 81, 653–657 (2022). https://doi.org/10.1007/s40042-022-00540-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-022-00540-9

Keywords

Navigation