Skip to main content
Log in

Nonlinear optical properties of indium-doped single-phased TiO2 thin films

  • Original Paper - Condensed Matter
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Single-phased rutile TiO2 and Ti0.9In0.1O2 thin films were fabricated using a pulsed laser deposition method. The optical transmission spectra reveal good transparency of the films in the visible spectral range of 330–900 nm. The absorption edge of the Ti0.9In0.1O2 film is blue-shifted compared with that of undoped TiO2 film. The third-order nonlinear optical properties of the films were investigated using a z-scan method with a pulse laser operating at 532 nm with pulse duration of 55 ps. The results show that the Ti0.9In0.1O2 and TiO2 films exhibit nonlinear saturable absorption and negative nonlinear refraction properties. The doping of In ions into TiO2 does not change the nonlinear optical absorption significantly. However, the nonlinear refractive index of Ti0.9In0.1O2 film is about two times larger than that of undoped TiO2 film. The local electron-pinned defect-dipoles and widening bandgap in the Ti0.9In0.1O2 film could be used to explain the observed results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Kim, Opt. Express 22, A1744 (2014)

    Article  ADS  Google Scholar 

  2. S.A. Bakhramov, A.M. Kokhkharov, E.A. Zakhidov, U.K. Makhmanov, S.P. Gofurov, J. Korean Phys. Soc. 64, 1494 (2014)

    Article  ADS  Google Scholar 

  3. R. Bala, A. Agarwal, S. Sanghi, N. Singh, Opt. Mater. 36, 352 (2013)

    Article  ADS  Google Scholar 

  4. S. Singla, O.P. Pandey, G. Sharma, J. Non-Cryst. Solids 521, 119481 (2019)

    Article  Google Scholar 

  5. G. Liu, S. Dai, B. Zhu, P. Li, Z. Wu, Y. Gu, Opt. Laser Technol. 120, 105746 (2019)

    Article  Google Scholar 

  6. H. Pan, H. Chu, Y. Li, S. Zhao, D. Li, J. Alloy Compd. 806, 52 (2019)

    Article  Google Scholar 

  7. J. Bornacelli, C.T. Torres, R. Rangel-Rojo, B. Can-Uc, A. Oliver, Opt. Mater. 97, 109388 (2019)

    Article  Google Scholar 

  8. M. Mosaddeq-Ur-Rahman, G. Yu, T. Soga, T. Jimbo, M. Umeno, J. Appl. Phys. 88, 4634 (2000)

    Article  ADS  Google Scholar 

  9. M. Ferroni, M.C. Carotta, V. Guidi, G. Martinelli, F. Ronconi, O. Richard, D. Van Dyck, J. Van Landuyt, Sens. Actuators B 68, 140 (2000)

    Article  Google Scholar 

  10. J. Reszczynska, T. Grzyb, J.W. Sobczak, W. Lisowski, M. Gazda, B. Ohtani, A. Zaleska, Appl. Surf. Sci. 307, 333 (2014)

    Article  Google Scholar 

  11. T.K. Srinivasan, B.S. Panigrahi, N. Suriyamurthy, P.K. Parida, B. Venkatraman, J. Rare Earths 33, 20 (2015)

    Article  Google Scholar 

  12. G. Xing, Z. Zhang, S. Qi, G. Zhou, K. Zhang, Z. Cui, Y. Feng, Z. Shan, S. Meng, Opt. Mater. 75, 102 (2018)

    Article  ADS  Google Scholar 

  13. M.A. Gillispie, M. Hest, M.S. Dabney, J.D. Perkins, D.S. Ginley, J. Mater. Res. 22, 2832 (2007)

    Article  ADS  Google Scholar 

  14. E. Wang, W. Yang, Y. Cao, J. Phys. Chem. C 113, 20912 (2009)

    Article  Google Scholar 

  15. W. Hu, Y. Liu, R.L. Withers, T.J. Frankcombe, L. Noren, A. Snashall, M. Kitchin, P. Smith, B. Gong, H. Chen, J. Schiemer, F. Brink, J. Wong-Leung, Nat. Mater. 12, 821 (2013)

    Article  ADS  Google Scholar 

  16. Y. Song, X. Wang, Y. Sui, Z. Liu, Y. Zhang, H. Zhan, B. Song, Z. Liu, Z. Lv, L. Tao, J. Tang, Sci. Rep. 6, 21478 (2016)

    Article  ADS  Google Scholar 

  17. M. Niu, D. Cheng, L. Huo, X. Shao, J. Alloy Compd. 539, 221 (2012)

    Article  Google Scholar 

  18. H. Peng, J. Li, S.S. Li, J.B. Xia, J. Phys. Chem. C 112, 13964 (2008)

    Article  Google Scholar 

  19. J. Tauc, Phys. Stat. Sol. 15, 627 (1966)

    Article  ADS  Google Scholar 

  20. Z.B. Li, C.G. Lin, Q.H. Nie, T.F. Xu, S.X. Dai, Acta Phys. Sin. 61, 104207 (2012)

    Article  Google Scholar 

  21. Y. Zhang, X. Xu, ACS Omega 5, 15344 (2020)

    Article  Google Scholar 

  22. S.K. Poznyak, D.V. Talapin, A.I. Kulak, J. Phys. Chem. B 105, 4816 (2001)

    Article  Google Scholar 

  23. M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan, E.W. van Stryland, IEEE J. Quantum Electron. 26, 760 (1990)

    Article  ADS  Google Scholar 

  24. P.B. Chapple, J. Staromlynska, J.A. Hermann, T.J. Mckay, J. Nonlinear Opt. Phys. Mater. 6, 251 (1997)

    Article  ADS  Google Scholar 

  25. M.E. Lines, Phys. Rev. B 43, 11978 (1991)

    Article  ADS  Google Scholar 

  26. X.F. Wang, Z.W. Wang, J.G. Yu, C.L. Liu, X.J. Zhao, Q.H. Gong, Chem. Phys. Lett. 399, 230 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weitian Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, R., Cui, L. & Wang, W. Nonlinear optical properties of indium-doped single-phased TiO2 thin films. J. Korean Phys. Soc. 81, 311–316 (2022). https://doi.org/10.1007/s40042-022-00519-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-022-00519-6

Keywords

Navigation