Skip to main content

Finding the best interacting dark energy model with observed data

Abstract

Dark energy and dark matter problem is one of the most important issues in modern cosmology. There are many candidate models explaining the current observed dark matter and dark energy density parameters. One of the promising models is the interacting dark energy model with holographic principle applied. It was shown that interacting holographic dark energy model in non-flat universe cannot accommodate a transition from the dark energy to the phantom regime and its background cosmological evolution is compatible to current observational data of energy fractions between dark matter and dark energy. However, only a few selected parameters yielded compatible cosmological background evolution. In this article, we want to extend this model to incorporate the current observed Hubble data as red shift. It was shown that the physical parameter most compatible to observed data are \(H_0 \sim 68\) and interaction parameter \(b^2 \sim 0.009\). We have applied a simple numerical regression technique to find out the best interacting model parameters to fit the current observational data. We have shown that the background cosmological evolution is insensitive to interaction strength but the evolution of Hubble constant.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. S. Perlmutter, G. Aldering, G. Goldhaber, R.A. Knop, P. Nugent, P.G. Castro, S. Deustua, S. Fabbro, A. Goobar, D.E. Groom et al., Astrophys. J. 517, 565 (1999). https://doi.org/10.1086/307221

    ADS  Article  Google Scholar 

  2. A.G. Riess, A.V. Filippenko, P. Challis, A. Clocchiatti, A. Diercks, P.M. Garnavich, R.L. Gilliland, C.J. Hogan, S. Jha, R.P. Kirshner et al., Astronomical J. 116, 1009 (1998). https://doi.org/10.1086/300499

    ADS  Article  Google Scholar 

  3. A.G. Riess, L.-G. Strolger, J. Tonry, S. Casertano, H.C. Ferguson, B. Mobasher, P. Challis, A.V. Filippenko, S. Jha, W. Li et al., Astrophys. J. 607, 665 (2004). https://doi.org/10.1086/383612

    ADS  Article  Google Scholar 

  4. P. Astier, J. Guy, N. Regnault, R. Pain, E. Aubourg, D. Balam, S. Basa, R.G. Carlberg, S. Fabbro, D. Fouchez et al., A&A 447, 31 (2006). https://doi.org/10.1051/0004-6361:20054185

    ADS  Article  Google Scholar 

  5. M. Tegmark, M.A. Strauss, M.R. Blanton, K. Abazajian, S. Dodelson, H. Sandvik, X. Wang, D.H. Weinberg, I. Zehavi, N.A. Bahcall, et al., Phys. Rev. D 69, 103501 (2004), https://link.aps.org/doi/10.1103/PhysRevD.69.103501

  6. K. Abazajian, J.K. Adelman-McCarthy, M.A. Ageros, S.S. Allam, S.J.A. Kurt, S.F. Anderson, J. Annis, N.A. Bahcall, I.K. Baldry, S. Bastian et al., Astronomical J. 128, 502 (2004). https://doi.org/10.1086/421365

    ADS  Article  Google Scholar 

  7. K. Abazajian, J.K. Adelman-McCarthy, M.A. Ageros, S.S. Allam, K.S.J. Anderson, S.F. Anderson, J. Annis, N.A. Bahcall, I.K. Baldry, S. Bastian et al., Astronomical J. 129, 1755 (2005). https://doi.org/10.1086/427544

    ADS  Article  Google Scholar 

  8. H.V. Peiris, E. Komatsu, L. Verde, D.N. Spergel, C.L. Bennett, M. Halpern, G. Hinshaw, N. Jarosik, A. Kogut, M. Limon et al., Astrophys. J. Suppl. Ser. 148, 213 (2003). https://doi.org/10.1086/377228

    ADS  Article  Google Scholar 

  9. C.L. Bennett, M. Halpern, G. Hinshaw, N. Jarosik, A. Kogut, M. Limon, S.S. Meyer, L. Page, D.N. Spergel, G.S. Tucker et al., Astrophys. J. Suppl. Ser 148, 1 (2003). https://doi.org/10.1086/377253

    ADS  Article  Google Scholar 

  10. D.N. Spergel, L. Verde, H.V. Peiris, E. Komatsu, M.R. Nolta, C.L. Bennett, M. Halpern, G. Hinshaw, N. Jarosik, A. Kogut et al., Astrophys. J. Suppl. Ser 148, 175 (2003). https://doi.org/10.1086/377226

    ADS  Article  Google Scholar 

  11. D.N. Spergel, R. Bean, O. Dore, M.R. Nolta, C.L. Bennett, J. Dunkley, G. Hinshaw, N. Jarosik, E. Komatsu, L. Page et al., Astrophys. J. Suppl. Ser. 170, 377 (2007). https://doi.org/10.1086/513700

    ADS  Article  Google Scholar 

  12. E.J. Copeland, M. Sami, S. Tsujikawa, Int. J. Modern Phys. D 15, 1753 (2006). https://doi.org/10.1142/S021827180600942X

    ADS  Article  Google Scholar 

  13. B. Wang, Y. Gong, E. Abdalla, Physics Letters B 624, 141 (2005), ISSN 0370-2693, https://www.sciencedirect.com/science/article/pii/S0370269305010725

  14. S. Wang, Y. Wang, M. Li, Physics Reports 696, 1 (2017), ISSN 0370-1573, holographic Dark Energy, https://www.sciencedirect.com/science/article/pii/S0370157317301564

  15. H. Kim, H.W. Lee, Y.S. Myung, Physics Letters B 632, 605 (2006), ISSN 0370-2693, https://www.sciencedirect.com/science/article/pii/S0370269305017077

  16. K.H. Kim, H.W. Lee, Y.S. Myung, Physics Letters B 648, 107 (2007), ISSN 0370-2693, https://www.sciencedirect.com/science/article/pii/S0370269307003401

  17. H. Tilaver, M. Salti, O. Aydogdu, E. Kangal, Computer Physics Communications 261, 107809 (2021), ISSN 0010-4655, https://www.sciencedirect.com/science/article/pii/S0010465520304033

  18. E.D. Valentino, O. Mena, S. Pan, L. Visinelli, W. Yang, A. Melchiorri, D.F. Mota, A.G. Riess, J. Silk, Class. Quantum Gravity 38, 153001 (2021). https://doi.org/10.1088/1361-6382/ac086d

    ADS  Article  Google Scholar 

  19. Z. Ivezic, A.J. Connolly, J.T. VanderPlas, A. Gray, Statistics, Data Mining, and Machine Learning in Astronomy: A Practical Python Guide for the Analysis of Survey Data (Princeton University Press, USA, 2014), ISBN 0691151687

  20. M.S. Berger, H. Shojaei, Phys. Rev. D 73, 083528 (2006), https://link.aps.org/doi/10.1103/PhysRevD.73.083528

  21. I. Bars, L. Krauss, F. Nekoogar, J. Terning, Extra Dimensions in Space and Time, Multiversal Journeys (Springer New York, 2009), ISBN 9780387776385, https://books.google.fr/books?id=fFSMatekilIC

  22. S. Ruder, An overview of gradient descent optimization algorithms (2016), arXiv:1609.04747

  23. J.S. Speagle, MNRAS 493, 3132 (2020). arXiv:1904.02180

    ADS  Article  Google Scholar 

Download references

Acknowledgements

H.W. Lee and J.C. Kim were supported by the National Research Foundation of Korea (NRF) (No. NRF-2018R1D1A1B05049338). K.Y. Kim was supported by “Regional Innovation Strategy (RIS)” through the National Research Foundation of Korea(NRF) funded by the Ministry of Education (MOE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoung Yee Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Lee, H.W. & Kim, K.Y. Finding the best interacting dark energy model with observed data. J. Korean Phys. Soc. 81, 191–197 (2022). https://doi.org/10.1007/s40042-022-00517-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-022-00517-8

Keywords

  • Cosmology
  • Holographic principle
  • Interacting dark energy
  • Regression method