Skip to main content

KIDS density functional for deformed nuclei: examples of the even–even Nd isotopes

Abstract

A global description of the ground-state properties of nuclei in a wide mass range in a unified manner is desirable not only for understanding exotic nuclei but also for providing nuclear data for applications. We demonstrate that the KIDS (Korea–IBS–Daegu–SKKU) functional describes the ground states appropriately with respect to the existing data and predictions for a possible application of the functional to all the nuclei by taking Nd isotopes as examples. The Kohn–Sham–Bogoliubov equation is solved for the Nd isotopes with the neutron numbers ranging from 60 to 160 by employing the KIDS functionals constructed to satisfy both neutron-matter equation of state or neutron star observation and selected nuclear data. Considering the nuclear deformation improves the description of the binding energies and radii. We find that the discrepancy from the experimental data is more significant for both neutron-rich and neutron-deficient isotopes. This discrepancy can be reduced and is consequently independent of the neutron number in an isotopic chain by adjusting the slope parameter of the symmetry energy. The KIDS functional is competent to a global fitting for a better description of nuclear properties in the nuclear chart.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. D. Lunney, J.M. Pearson, C. Thibault, Rev. Mod. Phys. 75, 1021 (2003)

    ADS  Google Scholar 

  2. K. Blaum, Phys. Rep. 425, 1 (2006)

    ADS  Google Scholar 

  3. T. Nakamura, H. Sakurai, H. Watanabe, Prog. Part. Nucl. Phys. 97, 53 (2017)

    ADS  Google Scholar 

  4. L. Neufcourt, Y. Cao, W. Nazarewicz, E. Olsen, F. Viens, Phys. Rev. Lett. 122, 062502 (2019)

    ADS  Google Scholar 

  5. Z.Y. Zhang et al., Phys. Rev. Lett. 122, 192503 (2019)

    ADS  Google Scholar 

  6. D.S. Ahn et al., Phys. Rev. Lett. 123, 212501 (2019)

    ADS  Google Scholar 

  7. M. Thoennessen, Rep. Prog. Phys. 76, 056301 (2013)

    ADS  Google Scholar 

  8. H. Koura, T. Tachibana, M. Uno, M. Yamada, Prog. Theor. Phys. 113, 305 (2005)

    ADS  Google Scholar 

  9. M. Liu, N. Wang, Y. Deng, X. Wu, Phys. Rev. C 84, 014333 (2011)

    ADS  Google Scholar 

  10. N.N. Ma, H.F. Zhang, X.J. Bao, P.H. Chen, J.M. Dong, J.Q. Li, F.Z. Hong, J. Phys. G 42, 095107 (2015)

    ADS  Google Scholar 

  11. N.N. Ma, H.F. Zhang, X.J. Bao, H.F. Zhang, Chin. Phys. C 43, 044105 (2019)

    ADS  Google Scholar 

  12. Z. He, M. Bao, Y.M. Zhao, A. Arima, Phys. Rev. C 90, 054320 (2014)

    ADS  Google Scholar 

  13. N. Tajima, Y.R. Shimizu, S. Takahara, Phys. Rev. C 82, 034316 (2010)

    ADS  Google Scholar 

  14. P. Möller, A. Sierk, T. Ichikawa, H. Sagawa, At. Data Nucl. Data Tables 109–110, 1 (2016)

    ADS  Google Scholar 

  15. P. Jiang, Z.M. Niu, Y.F. Niu, W.H. Long, Phys. Rev. C 98, 064323 (2018)

    ADS  Google Scholar 

  16. A. Bhagwat, X. Viñas, M. Centelles, P. Schuck, R. Wyss, Phys. Rev. C 81, 0444321 (2010)

    ADS  Google Scholar 

  17. A. Bhagwat, Phys. Rev. C 90, 064306 (2014)

    ADS  Google Scholar 

  18. J. Duflo, A.P. Zuker, Phys. Rev. C 52, 23 (1995)

    ADS  Google Scholar 

  19. S. Goriely, N. Chamel, J.M. Pearson, Phys. Rev. Lett. 102, 152503 (2009)

    ADS  Google Scholar 

  20. S. Goriely, N. Chamel, J.M. Pearson, Phys. Rev. C 93, 034337 (2016)

    ADS  Google Scholar 

  21. Z.M. Niu, H.Z. Liang, Phys. Lett. B 778, 48 (2018)

    ADS  Google Scholar 

  22. Z.M. Niu, J.Y. Fang, Y.F. Niu, Phys. Rev. C 100, 054311 (2019)

    ADS  Google Scholar 

  23. M. Shelley, A. Pastore, arXiv:2102.07497 [nucl-th]

  24. N. Tajima, S. Takahara, N. Onishi, Nucl. Phys. A 603, 23 (1996)

    ADS  Google Scholar 

  25. M.V. Stoitsov, J. Dobaczewski, W. Nazarewicz, S. Pittel, D.J. Dean, Phys. Rev. C 68, 054312 (2003)

    ADS  Google Scholar 

  26. J. Erler, N. Birge, M. Kortelainen, W. Nazarewicz, E. Olsen, A.M. Perhac, M. Stotsov, Nature 486, 509 (2012)

    ADS  Google Scholar 

  27. A. Afnasjev, S. Agbemava, D. Ray, P. Ring, Phys. Lett. B 726, 680 (2013)

    ADS  Google Scholar 

  28. J.S. Zheng, N.Y. Wang, Z.Y. Wang, Z.M. Niu, Y.F. Niu, B. Sun, Phys. Rev. C 90, 014303 (2014)

    ADS  Google Scholar 

  29. M. Shi, Z.M. Niu, H.Z. Liang, Chin. Phys. C 43, 074104 (2019)

    ADS  Google Scholar 

  30. K. Zhang et al., Phys. Rev. C 102, 024314 (2020)

    ADS  Google Scholar 

  31. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

    ADS  Google Scholar 

  32. T. Yokota, T. Naito, Phys. Rev. Res. 3, L012015 (2021)

    Google Scholar 

  33. J.E. Drut, R.J. Furnstahl, L. Platter, Prog. Part. Nucl. Phys. 64, 120 (2010)

    ADS  Google Scholar 

  34. S. Puglia, A. Bhattacharyya, R.J. Furnstahl, Nucl. Phys. A 723, 145 (2003)

    ADS  Google Scholar 

  35. A. Phattacharyya, R.J. Furnstahl, Nucl. Phys. A 747, 268 (2005)

    ADS  Google Scholar 

  36. R.J. Furnstahl, H.-W. Hammer, S. Puglia, Ann. Phys. 322, 2703 (2007)

    ADS  Google Scholar 

  37. R.J. Furnstahl, Eur. Phys. J. A 56, 85 (2020)

    ADS  Google Scholar 

  38. J. Braun, J. Phys. G 39, 033001 (2012)

    ADS  Google Scholar 

  39. S. Kemler, J. Braun, J. Phys. G 40, 085105 (2013)

    ADS  Google Scholar 

  40. S. Kemler, M. Pospiech, J. Braun, J. Phys. G 44, 015101 (2017)

    ADS  Google Scholar 

  41. H. Liang, Y. Niu, T. Hatsuda, Phys. Lett. B 779, 436 (2018)

    ADS  Google Scholar 

  42. T. Yokota, K. Yoshida, T. Kunihiro, Phys. Rev. C 99, 024302 (2019)

    ADS  Google Scholar 

  43. T. Yokota, K. Yoshida, T. Kunihiro, Prog. Theor. Exp. Phys. 2019, 011D01 (2019)

    Google Scholar 

  44. T. Yokota, H. Kasuya, K. Yoshida, T. Kunihiro, Prog. Theor. Exp. Phys. 2021, 013A03 (2021)

    Google Scholar 

  45. M. Baldo, P. Schck, X. Viñas, Phys. Lett. B 663, 390 (2008)

    ADS  Google Scholar 

  46. N. Baldo, L.M. Robledo, P. Schuck, X. Viñas, Phys. Rev. C 87, 064305 (2013)

    ADS  Google Scholar 

  47. D. Chatterjee, F. Gulminelli, A.R. Raduta, J. Margueron, Phys. Rev. C 96, 065805 (2017)

    ADS  Google Scholar 

  48. A. Bulgac, M.M. Forbes, S. Jin, R. Navarro Perez, N. Schunck, Phys. Rev. C 97, 044313 (2018)

    ADS  Google Scholar 

  49. M. Stoitsov, M. Kortelainen, S.K. Bogner, T. Guguet, R.J. Furnstahl, B. Gebremariam, N. Schunk, Phys. Rev. C 82, 054307 (2010)

    ADS  Google Scholar 

  50. P. Papakonstantinou, T.-S. Park, Y. Lim, C.H. Hyun, Phys. Rev. C 97, 014312 (2018)

    ADS  Google Scholar 

  51. H. Gil, P. Papakonstantinou, C.H. Hyun, Y. Oh, Phys. Rev. C 99, 064319 (2019)

    ADS  Google Scholar 

  52. H. Gil, Y.-M. Kim, C.H. Hyun, P. Papakonstantinou, Y. Oh, Phys. Rev. C 100, 014312 (2019)

    ADS  Google Scholar 

  53. H. Gil, Y.-M. Kim, P. Papakonstantinou, C.H. Hyun, Phys. Rev. C 103, 034330 (2021)

    ADS  Google Scholar 

  54. H. Gil, C.H. Hyun, New Phys. Sae Mulli 71, 242 (2021)

    Google Scholar 

  55. A. Akmal, V.R. Padharipande, D.G. Ravenhall, Phys. Rev. C 58, 1804 (1998)

    ADS  Google Scholar 

  56. E. Chabanat, P. Bonche, P. Haensel, J. Meyer, R. Schaeffer, Nucl. Phys. A 653, 231 (1998) [Erratum: Nucl. Phys. A 643, 441 (1998)]

  57. J. Dovaczewski, W. Nazarewicz, Prog. Theor. Phys. Suppl. 146, 70 (2002)

    ADS  Google Scholar 

  58. M. Yamagami, Y.R. Shimizu, T. Nakatsukasa, Phys. Rev. C 80, 064301 (2009)

    ADS  Google Scholar 

  59. M.V. Stoitsov, N. Schunck, M. Kortelainen, N. Michel, H. Nam, E. Olsen, J. Sarich, W. Wild, Comput. Phys. Commun. 184, 1592 (2013)

    ADS  Google Scholar 

  60. M. Kortelainen, T. Lesinski, J. More, W. Nazarewicz, J. Sarich, N. Schunck, M.V. Stoitsov, S. Wild, Phys. Rev. C 82, 024313 (2010)

    ADS  Google Scholar 

  61. W. Huang, G. Audi, M. Wang, F.G. Kondev, S. Naimi, X. Xu, Chin. Phys. C 41, 030002 (2017)

    ADS  Google Scholar 

  62. M. Wang, G. Audi, F.G. Kondev, W. Huang, S. Naimi, X. Xu, Chin. Phys. C 41, 030003 (2017)

    ADS  Google Scholar 

  63. T. Sumikama, K. Yoshinaga, H. Watanabe, S. Nishimura, Y. Miyashita, K. Yamaguchi, K. Sugimoto, J. Chiba, Z. Li, H. Baba, J.S. Berryman, N. Blasi, A. Bracco, F. Camera, P. Doornenbal, S. Go, T. Hashimoto, S. Hayakawa, C. Hinke, E. Ideguchi, T. Isobe, Y. Ito, D.G. Jenkins, Y. Kawada, N. Kobayashi, Y. Kondo, R. Krucken, S. Kubono, G. Lorusso, T. Nakano, M. Kurata-Nishimura, A. Odahara, H.J. Ong, S. Ota, Z. Podolyak, H. Sakurai, H. Scheit, K. Steiger, D. Steppenbeck, S. Takano, A. Takashima, K. Tajiri, T. Teranishi, Y. Wakabayashi, P.M. Walker, O. Wieland, H. Yamaguchi, Phys. Rev. Lett. 106, 202501 (2011)

    ADS  Google Scholar 

  64. S. Nishimura, Z. Li, H. Watanabe, K. Yoshinaga, T. Sumikama, T. Tachibana, K. Yamaguchi, M. Kurata- Nishimura, G. Lorusso, Y. Miyashita, A. Odahara, H. Baba, J.S. Berryman, N. Blasi, A. Bracco, F. Camera, J. Chiba, P. Doornenbal, S. Go, T. Hashimoto, S. Hayakawa, C. Hinke, E. Ideguchi, T. Isobe, Y. Ito, D.G. Jenkins, Y. Kawada, N. Kobayashi, Y. Kondo, R. Krucken, S. Kubono, T. Nakano, H.J. Ong, S. Ota, Z. Podolyak, H. Sakurai, H. Scheit, K. Steiger, D. Steppenbeck, K. Sugimoto, S. Takano, A. Takashima, K. Tajiri, T. Teranishi, Y. Wakabayashi, P.M. Walker, O. Wieland, H. Yamaguchi, Phys. Rev. Lett. 106, 052502 (2011)

  65. K. Yoshida, Prog. Theor. Exp. Phys. 2013, 113 (2013)

    Google Scholar 

  66. K. Yoshida, PoS INPC2016, 059 (2017)

  67. S. Raman, C. Nestor, P. Tikkanen, At. Data Nucl. Data Tables 78, 1 (2001)

    ADS  Google Scholar 

  68. K. Yoshida, T. Nakatsukasa, Phys. Rev. C 83, 021304 (2011)

    ADS  Google Scholar 

  69. C. Losa, A. Pastore, T. Dossing, E. Vigezzi, R.A. Groglia, Phys. Rev. C 81, 064307 (2010)

    ADS  Google Scholar 

  70. M. Stoitsov, M. Kortelainen, T. Nakatsukasa, C. Losa, W. Nazarewicz, Phys. Rev. C 84, 041305 (2011)

    ADS  Google Scholar 

  71. T. Oishi, M. Kortelainen, N. Hinohara, Phys. Rev. C 93, 034329 (2016)

    ADS  Google Scholar 

  72. A.V. Afansjev, S.E. Agbemava, D. Ray, P. Ray, Phys. Rev. C 91, 014324 (2015)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the NRF grants funded by the Korean government (nos. 2018R1A5A1025563 and 2020R1F1A1052495), the JSPS KAKENHI (Grants nos. JP19K03824, JP19K03872, JP19KK0343, and JP20K03964), and the JSPS/NRF/NSFC A3 Foresight Program “Nuclear Physics in the 21st Century.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Ho Hyun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gil, H., Hinohara, N., Hyun, C.H. et al. KIDS density functional for deformed nuclei: examples of the even–even Nd isotopes. J. Korean Phys. Soc. 81, 113–120 (2022). https://doi.org/10.1007/s40042-022-00504-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-022-00504-z

Keywords

  • Nuclear energy density functional
  • Symmetry energy
  • Deformation