Skip to main content
Log in

KIDS density functional for deformed nuclei: examples of the even–even Nd isotopes

  • Original Paper - Particles and Nuclei
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

A global description of the ground-state properties of nuclei in a wide mass range in a unified manner is desirable not only for understanding exotic nuclei but also for providing nuclear data for applications. We demonstrate that the KIDS (Korea–IBS–Daegu–SKKU) functional describes the ground states appropriately with respect to the existing data and predictions for a possible application of the functional to all the nuclei by taking Nd isotopes as examples. The Kohn–Sham–Bogoliubov equation is solved for the Nd isotopes with the neutron numbers ranging from 60 to 160 by employing the KIDS functionals constructed to satisfy both neutron-matter equation of state or neutron star observation and selected nuclear data. Considering the nuclear deformation improves the description of the binding energies and radii. We find that the discrepancy from the experimental data is more significant for both neutron-rich and neutron-deficient isotopes. This discrepancy can be reduced and is consequently independent of the neutron number in an isotopic chain by adjusting the slope parameter of the symmetry energy. The KIDS functional is competent to a global fitting for a better description of nuclear properties in the nuclear chart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D. Lunney, J.M. Pearson, C. Thibault, Rev. Mod. Phys. 75, 1021 (2003)

    Article  ADS  Google Scholar 

  2. K. Blaum, Phys. Rep. 425, 1 (2006)

    Article  ADS  Google Scholar 

  3. T. Nakamura, H. Sakurai, H. Watanabe, Prog. Part. Nucl. Phys. 97, 53 (2017)

    Article  ADS  Google Scholar 

  4. L. Neufcourt, Y. Cao, W. Nazarewicz, E. Olsen, F. Viens, Phys. Rev. Lett. 122, 062502 (2019)

    Article  ADS  Google Scholar 

  5. Z.Y. Zhang et al., Phys. Rev. Lett. 122, 192503 (2019)

    Article  ADS  Google Scholar 

  6. D.S. Ahn et al., Phys. Rev. Lett. 123, 212501 (2019)

    Article  ADS  Google Scholar 

  7. M. Thoennessen, Rep. Prog. Phys. 76, 056301 (2013)

    Article  ADS  Google Scholar 

  8. H. Koura, T. Tachibana, M. Uno, M. Yamada, Prog. Theor. Phys. 113, 305 (2005)

    Article  ADS  Google Scholar 

  9. M. Liu, N. Wang, Y. Deng, X. Wu, Phys. Rev. C 84, 014333 (2011)

    Article  ADS  Google Scholar 

  10. N.N. Ma, H.F. Zhang, X.J. Bao, P.H. Chen, J.M. Dong, J.Q. Li, F.Z. Hong, J. Phys. G 42, 095107 (2015)

    Article  ADS  Google Scholar 

  11. N.N. Ma, H.F. Zhang, X.J. Bao, H.F. Zhang, Chin. Phys. C 43, 044105 (2019)

    Article  ADS  Google Scholar 

  12. Z. He, M. Bao, Y.M. Zhao, A. Arima, Phys. Rev. C 90, 054320 (2014)

    Article  ADS  Google Scholar 

  13. N. Tajima, Y.R. Shimizu, S. Takahara, Phys. Rev. C 82, 034316 (2010)

    Article  ADS  Google Scholar 

  14. P. Möller, A. Sierk, T. Ichikawa, H. Sagawa, At. Data Nucl. Data Tables 109–110, 1 (2016)

    Article  ADS  Google Scholar 

  15. P. Jiang, Z.M. Niu, Y.F. Niu, W.H. Long, Phys. Rev. C 98, 064323 (2018)

    Article  ADS  Google Scholar 

  16. A. Bhagwat, X. Viñas, M. Centelles, P. Schuck, R. Wyss, Phys. Rev. C 81, 0444321 (2010)

    Article  ADS  Google Scholar 

  17. A. Bhagwat, Phys. Rev. C 90, 064306 (2014)

    Article  ADS  Google Scholar 

  18. J. Duflo, A.P. Zuker, Phys. Rev. C 52, 23 (1995)

    Article  ADS  Google Scholar 

  19. S. Goriely, N. Chamel, J.M. Pearson, Phys. Rev. Lett. 102, 152503 (2009)

    Article  ADS  Google Scholar 

  20. S. Goriely, N. Chamel, J.M. Pearson, Phys. Rev. C 93, 034337 (2016)

    Article  ADS  Google Scholar 

  21. Z.M. Niu, H.Z. Liang, Phys. Lett. B 778, 48 (2018)

    Article  ADS  Google Scholar 

  22. Z.M. Niu, J.Y. Fang, Y.F. Niu, Phys. Rev. C 100, 054311 (2019)

    Article  ADS  Google Scholar 

  23. M. Shelley, A. Pastore, arXiv:2102.07497 [nucl-th]

  24. N. Tajima, S. Takahara, N. Onishi, Nucl. Phys. A 603, 23 (1996)

    Article  ADS  Google Scholar 

  25. M.V. Stoitsov, J. Dobaczewski, W. Nazarewicz, S. Pittel, D.J. Dean, Phys. Rev. C 68, 054312 (2003)

    Article  ADS  Google Scholar 

  26. J. Erler, N. Birge, M. Kortelainen, W. Nazarewicz, E. Olsen, A.M. Perhac, M. Stotsov, Nature 486, 509 (2012)

    Article  ADS  Google Scholar 

  27. A. Afnasjev, S. Agbemava, D. Ray, P. Ring, Phys. Lett. B 726, 680 (2013)

    Article  ADS  Google Scholar 

  28. J.S. Zheng, N.Y. Wang, Z.Y. Wang, Z.M. Niu, Y.F. Niu, B. Sun, Phys. Rev. C 90, 014303 (2014)

    Article  ADS  Google Scholar 

  29. M. Shi, Z.M. Niu, H.Z. Liang, Chin. Phys. C 43, 074104 (2019)

    Article  ADS  Google Scholar 

  30. K. Zhang et al., Phys. Rev. C 102, 024314 (2020)

    Article  ADS  Google Scholar 

  31. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

    Article  ADS  Google Scholar 

  32. T. Yokota, T. Naito, Phys. Rev. Res. 3, L012015 (2021)

    Article  Google Scholar 

  33. J.E. Drut, R.J. Furnstahl, L. Platter, Prog. Part. Nucl. Phys. 64, 120 (2010)

    Article  ADS  Google Scholar 

  34. S. Puglia, A. Bhattacharyya, R.J. Furnstahl, Nucl. Phys. A 723, 145 (2003)

    Article  ADS  Google Scholar 

  35. A. Phattacharyya, R.J. Furnstahl, Nucl. Phys. A 747, 268 (2005)

    Article  ADS  Google Scholar 

  36. R.J. Furnstahl, H.-W. Hammer, S. Puglia, Ann. Phys. 322, 2703 (2007)

    Article  ADS  Google Scholar 

  37. R.J. Furnstahl, Eur. Phys. J. A 56, 85 (2020)

    Article  ADS  Google Scholar 

  38. J. Braun, J. Phys. G 39, 033001 (2012)

    Article  ADS  Google Scholar 

  39. S. Kemler, J. Braun, J. Phys. G 40, 085105 (2013)

    Article  ADS  Google Scholar 

  40. S. Kemler, M. Pospiech, J. Braun, J. Phys. G 44, 015101 (2017)

    Article  ADS  Google Scholar 

  41. H. Liang, Y. Niu, T. Hatsuda, Phys. Lett. B 779, 436 (2018)

    Article  ADS  Google Scholar 

  42. T. Yokota, K. Yoshida, T. Kunihiro, Phys. Rev. C 99, 024302 (2019)

    Article  ADS  Google Scholar 

  43. T. Yokota, K. Yoshida, T. Kunihiro, Prog. Theor. Exp. Phys. 2019, 011D01 (2019)

    Article  Google Scholar 

  44. T. Yokota, H. Kasuya, K. Yoshida, T. Kunihiro, Prog. Theor. Exp. Phys. 2021, 013A03 (2021)

    Article  Google Scholar 

  45. M. Baldo, P. Schck, X. Viñas, Phys. Lett. B 663, 390 (2008)

    Article  ADS  Google Scholar 

  46. N. Baldo, L.M. Robledo, P. Schuck, X. Viñas, Phys. Rev. C 87, 064305 (2013)

    Article  ADS  Google Scholar 

  47. D. Chatterjee, F. Gulminelli, A.R. Raduta, J. Margueron, Phys. Rev. C 96, 065805 (2017)

    Article  ADS  Google Scholar 

  48. A. Bulgac, M.M. Forbes, S. Jin, R. Navarro Perez, N. Schunck, Phys. Rev. C 97, 044313 (2018)

    Article  ADS  Google Scholar 

  49. M. Stoitsov, M. Kortelainen, S.K. Bogner, T. Guguet, R.J. Furnstahl, B. Gebremariam, N. Schunk, Phys. Rev. C 82, 054307 (2010)

    Article  ADS  Google Scholar 

  50. P. Papakonstantinou, T.-S. Park, Y. Lim, C.H. Hyun, Phys. Rev. C 97, 014312 (2018)

    Article  ADS  Google Scholar 

  51. H. Gil, P. Papakonstantinou, C.H. Hyun, Y. Oh, Phys. Rev. C 99, 064319 (2019)

    Article  ADS  Google Scholar 

  52. H. Gil, Y.-M. Kim, C.H. Hyun, P. Papakonstantinou, Y. Oh, Phys. Rev. C 100, 014312 (2019)

    Article  ADS  Google Scholar 

  53. H. Gil, Y.-M. Kim, P. Papakonstantinou, C.H. Hyun, Phys. Rev. C 103, 034330 (2021)

    Article  ADS  Google Scholar 

  54. H. Gil, C.H. Hyun, New Phys. Sae Mulli 71, 242 (2021)

    Article  Google Scholar 

  55. A. Akmal, V.R. Padharipande, D.G. Ravenhall, Phys. Rev. C 58, 1804 (1998)

    Article  ADS  Google Scholar 

  56. E. Chabanat, P. Bonche, P. Haensel, J. Meyer, R. Schaeffer, Nucl. Phys. A 653, 231 (1998) [Erratum: Nucl. Phys. A 643, 441 (1998)]

  57. J. Dovaczewski, W. Nazarewicz, Prog. Theor. Phys. Suppl. 146, 70 (2002)

    Article  ADS  Google Scholar 

  58. M. Yamagami, Y.R. Shimizu, T. Nakatsukasa, Phys. Rev. C 80, 064301 (2009)

    Article  ADS  Google Scholar 

  59. M.V. Stoitsov, N. Schunck, M. Kortelainen, N. Michel, H. Nam, E. Olsen, J. Sarich, W. Wild, Comput. Phys. Commun. 184, 1592 (2013)

    Article  ADS  Google Scholar 

  60. M. Kortelainen, T. Lesinski, J. More, W. Nazarewicz, J. Sarich, N. Schunck, M.V. Stoitsov, S. Wild, Phys. Rev. C 82, 024313 (2010)

    Article  ADS  Google Scholar 

  61. W. Huang, G. Audi, M. Wang, F.G. Kondev, S. Naimi, X. Xu, Chin. Phys. C 41, 030002 (2017)

    Article  ADS  Google Scholar 

  62. M. Wang, G. Audi, F.G. Kondev, W. Huang, S. Naimi, X. Xu, Chin. Phys. C 41, 030003 (2017)

    Article  ADS  Google Scholar 

  63. T. Sumikama, K. Yoshinaga, H. Watanabe, S. Nishimura, Y. Miyashita, K. Yamaguchi, K. Sugimoto, J. Chiba, Z. Li, H. Baba, J.S. Berryman, N. Blasi, A. Bracco, F. Camera, P. Doornenbal, S. Go, T. Hashimoto, S. Hayakawa, C. Hinke, E. Ideguchi, T. Isobe, Y. Ito, D.G. Jenkins, Y. Kawada, N. Kobayashi, Y. Kondo, R. Krucken, S. Kubono, G. Lorusso, T. Nakano, M. Kurata-Nishimura, A. Odahara, H.J. Ong, S. Ota, Z. Podolyak, H. Sakurai, H. Scheit, K. Steiger, D. Steppenbeck, S. Takano, A. Takashima, K. Tajiri, T. Teranishi, Y. Wakabayashi, P.M. Walker, O. Wieland, H. Yamaguchi, Phys. Rev. Lett. 106, 202501 (2011)

    Article  ADS  Google Scholar 

  64. S. Nishimura, Z. Li, H. Watanabe, K. Yoshinaga, T. Sumikama, T. Tachibana, K. Yamaguchi, M. Kurata- Nishimura, G. Lorusso, Y. Miyashita, A. Odahara, H. Baba, J.S. Berryman, N. Blasi, A. Bracco, F. Camera, J. Chiba, P. Doornenbal, S. Go, T. Hashimoto, S. Hayakawa, C. Hinke, E. Ideguchi, T. Isobe, Y. Ito, D.G. Jenkins, Y. Kawada, N. Kobayashi, Y. Kondo, R. Krucken, S. Kubono, T. Nakano, H.J. Ong, S. Ota, Z. Podolyak, H. Sakurai, H. Scheit, K. Steiger, D. Steppenbeck, K. Sugimoto, S. Takano, A. Takashima, K. Tajiri, T. Teranishi, Y. Wakabayashi, P.M. Walker, O. Wieland, H. Yamaguchi, Phys. Rev. Lett. 106, 052502 (2011)

  65. K. Yoshida, Prog. Theor. Exp. Phys. 2013, 113 (2013)

    Google Scholar 

  66. K. Yoshida, PoS INPC2016, 059 (2017)

  67. S. Raman, C. Nestor, P. Tikkanen, At. Data Nucl. Data Tables 78, 1 (2001)

    Article  ADS  Google Scholar 

  68. K. Yoshida, T. Nakatsukasa, Phys. Rev. C 83, 021304 (2011)

    Article  ADS  Google Scholar 

  69. C. Losa, A. Pastore, T. Dossing, E. Vigezzi, R.A. Groglia, Phys. Rev. C 81, 064307 (2010)

    Article  ADS  Google Scholar 

  70. M. Stoitsov, M. Kortelainen, T. Nakatsukasa, C. Losa, W. Nazarewicz, Phys. Rev. C 84, 041305 (2011)

    Article  ADS  Google Scholar 

  71. T. Oishi, M. Kortelainen, N. Hinohara, Phys. Rev. C 93, 034329 (2016)

    Article  ADS  Google Scholar 

  72. A.V. Afansjev, S.E. Agbemava, D. Ray, P. Ray, Phys. Rev. C 91, 014324 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the NRF grants funded by the Korean government (nos. 2018R1A5A1025563 and 2020R1F1A1052495), the JSPS KAKENHI (Grants nos. JP19K03824, JP19K03872, JP19KK0343, and JP20K03964), and the JSPS/NRF/NSFC A3 Foresight Program “Nuclear Physics in the 21st Century.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Ho Hyun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gil, H., Hinohara, N., Hyun, C.H. et al. KIDS density functional for deformed nuclei: examples of the even–even Nd isotopes. J. Korean Phys. Soc. 81, 113–120 (2022). https://doi.org/10.1007/s40042-022-00504-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-022-00504-z

Keywords

Navigation