Skip to main content
Log in

Silver thiocyanate treatment-induced enhancement of photoluminescence efficiency of CsPbBr3 perovskite quantum dots

  • Original Paper - Condensed Matter
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Metal halide perovskite nanostructures have received much attention for many optoelectronic devices, such as solar cells, light-emitting diodes, photodetectors, and sensors due to their sharp emission spectra and adjustable wide optical bandgap. However, low emission efficiency and stability still impede their development and application. This paper reports a facile surface modification of the CsPbBr3 quantum dots (QDs) to enhance the optical performance using a silver thiocyanate (AgSCN) additive. Structural and chemical investigations show that the QD morphology and size do not change significantly, while the SCN anion is incorporated into the CsPbBr3 QDs as a function of AgSCN loading. In addition, the SCN anion interacts with Pb2+ in the CsPbBr3 QDs, which indicates that the SCN anion fills out the Br anion vacancy site or substitutes the Br- anion without significantly affecting the ligand configuration. Therefore, the photoluminescence (PL) intensity and stability of the AgSCN-treated CsPbBr3 QDs are improved compared to the pristine one, because the AgSCN plays a critical role in recovering the appropriate surface stoichiometry and eliminating the defective surface states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C.R. Kagan, L.C. Bassett, C.B. Murray, S.M. Thompson, Chem. Rev. 121, 3186–3233 (2021)

    Article  Google Scholar 

  2. G.H. Nam, I.K. Park, J. Korean Phys. Soc. 66, 785–789 (2015)

    Article  ADS  Google Scholar 

  3. L. Protesescu, S. Yakunin, M.I. Bodnarchuk, F. Krieg, R. Caputo, C.H. Hendon, R.X. Yang, A. Walsh, M.V. Kovalenko, Nano Lett. 15, 3692–3696 (2015)

    Article  ADS  Google Scholar 

  4. D.K. Sharma, S. Hirata, M. Vacha, Nat. Commun. 10, 4499 (2019)

    Article  ADS  Google Scholar 

  5. H. Mashiyama, Y. Kurihara, T. Azetsu, J. Korean Phys. Soc. 32, 156 (1998)

    Google Scholar 

  6. S.B. Cho, J.I. Sohn, S.S. Lee, S.G. Moon, B. Hou, I.K. Park, J. Mater. Chem. C 9, 7027–7034 (2021)

    Article  Google Scholar 

  7. S.G. Moon, S.B. Cho, K.K. Kim, I.K. Park, J. Alloys Comp. 858, 157643 (2021)

    Article  Google Scholar 

  8. S.B. Cho, J.W. Jung, Y.S. Kim, C.H. Cho, I.K. Park, CrystEngComm 23, 2746–2755 (2021)

    Article  Google Scholar 

  9. B. Li, M. Lu, J. Feng, J. Zhang, P.M. Smowton, J.I. Sohn, I.K. Park, H. Zhong, B. Hou, J. Mater. Chem. C 8, 10676 (2020)

    Article  Google Scholar 

  10. Z. Shi, S. Li, Y. Li, H. Ji, X. Li, D. Wu, T. Xu, Y. Chen, Y. Tian, Y. Zhang, C. Shan, G. Du, ACS Nano 12, 1462–1472 (2018)

    Article  Google Scholar 

  11. N. Aristidou, I. Sanchez-Molina, T. Chotchuangchutchaval, M. Brown, L. Martinez, T. Rath, S.A. Haque, Angew. Chem. Int. Ed. 54, 8208–8212 (2015)

    Article  Google Scholar 

  12. M. Lorenzon, L. Sortino, Q. Akkerman, S. Accornero, J. Pedrini, M. Prato, V. Pinchetti, F. Meinardi, L. Manna, S. Brovelli, Nano Lett. 17, 3844–3853 (2017)

    Article  ADS  Google Scholar 

  13. S. Pathak, A. Sepe, A. Sadhanala, F. Deschler, A. Haghighirad, N. Sakai, K.C. Goedel, S.D. Stranks, N. Noel, M. Price, ACS Nano 9, 2311–2320 (2015)

    Article  Google Scholar 

  14. G.E. Eperon, S.N. Habisreutinger, T. Leijtens, B.J. Bruijnaers, J.J. van Franeker, D.W. DeQuilettes, S. Pathak, R.J. Sutton, G. Grancini, D.S. Ginger, ACS Nano 9, 9380–9393 (2015)

    Article  Google Scholar 

  15. L. Zhang, M.G. Ju, W. Liang, Phys. Chem. Chem. Phys. 18, 23174–23183 (2016)

    Article  Google Scholar 

  16. C. Zheng, C. Bi, F. Huang, D. Binks, J. Tian, A.C.S. Appl, Mater. Interfaces 11, 25410–25416 (2019)

    Article  Google Scholar 

  17. M. Zirak, E. Moyen, H. Alehdaghi, A. Kanwat, W.C. Choi, J. Jang, A.C.S. Appl, Nano Mater. 2, 5655–5662 (2019)

    Google Scholar 

  18. M. Zhang, Z.Q. Tian, D.L. Zhu, H. He, S.W. Guo, Z.L. Chen, D.W. Pang, New J. Chem. 42, 9496–9500 (2018)

    Article  Google Scholar 

  19. F. Boussoufi, M. Pousthomis, A. Kuntzmann, M. D’Amico, G. Patriarche, B. Dubertret, A.C.S. Appl, Nano Mater. 4, 7502–7512 (2021)

    Google Scholar 

  20. L. Xu, J. Li, T. Fang, Y. Zhao, S. Yuan, Y. Dong, J. Song, Nanoscale Adv. 1, 980–988 (2019)

    Article  ADS  Google Scholar 

  21. H. Yang, W. Yin, W. Dong, L. Gao, C.H. Tan, W. Li, X. Zhang, J. Zhang, J. Mater. Chem. C 8, 14439–14445 (2020)

    Article  Google Scholar 

  22. S. Sun, M. Lu, J. Guo, F. Zhang, P. Lu, Y. Fu, X. Bai, Z. Shi, Z. Wu, W.W. Yu, Y. Zhang, Chem. Eng. J. 433, 133556 (2022)

    Article  Google Scholar 

  23. T. Wu, J. Li, Y. Zou, H. Xu, K. Wen, S. Wan, S. Bai, T. Song, J.A. McLeod, S. Duhm, F. Gao, B. Sun, Angew. Chem. Int. Ed. 59, 4099–4105 (2020)

    Article  Google Scholar 

  24. J. Wang, Y. Xu, S. Zou, C. Pang, R. Cao, Z. Pan, C. Guo, S. Hu, J. Liu, Z. Xie, Z. Gong, J. Mater. Chem. C 9, 11324–11330 (2021)

    Article  Google Scholar 

  25. M. Lu, J. Guo, P. Lu, L. Zhang, Y. Zhang, Q. Dai, Y. Hu, V.L. Colvin, W.W. Yu, J. Phys. Chem. C 123, 22787–22792 (2019)

    Article  Google Scholar 

  26. D. Yoo, J.Y. Woo, Y. Kim, S.W. Kim, S.-H. Wei, S. Jeong, Y.-H. Kim, J. Phys. Chem. Lett. 11, 652–658 (2020)

    Article  Google Scholar 

  27. J.B. Cho, S.B. Cho, I.K. Park, J. Alloys Comp. 891, 161996 (2022)

    Article  Google Scholar 

  28. J. Pan, L. Quan, Y. Zhao, W. Peng, B. Murali, S.P. Sarmah, M. Yuan, L. Sinatra, N.M. Alyami, J. Liu, E. Yassitepe, Z. Yang, O. Voznyy, R. Comin, M.N. Hedhili, O.F. Mohammed, Z.H. Lu, D. Kim, E.H. Sargent, O.M. Bakr, Adv. Mater. 28, 8718 (2016)

    Article  Google Scholar 

  29. M. Sebastian, J.A. Peters, C.C. Stoumpos, J. Im, S.S. Kostina, Z. Liu, M.G. Kanatzidis, A.J. Freeman, B.W. Wessels, Phys. Rev. B 92, 235210 (2015)

    Article  ADS  Google Scholar 

  30. L.E. Brus, J. Chem. Phys. 80, 4403 (1984)

    Article  ADS  Google Scholar 

  31. S. Thapa, G.C. Adhikari, H. Zhu, P. Zhu, J. All. Compd. 860, 158501 (2021)

    Article  Google Scholar 

  32. P. Suksaengrat, N. Faibut, A. Chompoosor, J. Mater. Sci. Mater. Electron. 32, 1557–1569 (2021)

    Article  Google Scholar 

  33. M. Hou, A. Yu, R. Lu, J. Raman Spectrosc. 48, 108–112 (2016)

    Article  ADS  Google Scholar 

  34. B.A. Koscher, J.K. Swabeck, N.D. Bronstein, A.P. Alivisatos, J. Am. Chem. Soc. 139, 6566–6569 (2017)

    Article  Google Scholar 

  35. S. Zhan, X.-B. Fan, J. Zhang, J. Yang, S.Y. Bang, S.D. Han, D.-W. Shin, S. Lee, H.W. Choi, X. Wang, B. Hou, L.G. Occhipinti, J.M. Kim, J. Mater. Chem. C 8, 16001–16009 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Research program funded by the Seoultech (Seoul National University of Science & Technology)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Hou or Il-Kyu Park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, HY., Cho, SB., Hou, B. et al. Silver thiocyanate treatment-induced enhancement of photoluminescence efficiency of CsPbBr3 perovskite quantum dots. J. Korean Phys. Soc. 81, 150–157 (2022). https://doi.org/10.1007/s40042-022-00501-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-022-00501-2

Keywords

Navigation