Skip to main content

The electrical properties of ZnO/Si heterojunction diode depending on thin film thickness

Abstract

In this work, ZnO thin films have been produced on p-Si wafer depending on number of laser pulses applied using pulse laser deposition (PLD) technique at room temperature conditions. Three different thicknesses of ZnO thin films (ZnO1, ZnO2 and ZnO3) have been produced by applying 18,000, 36,000 and 54,000 laser pulses and thicknesses of these produced three thin films have been measured to be 41 nm, 70 nm, 197 nm, respectively. It is observed in this work that while thicknesses of ZnO thin films increases, crystal structure of thin films develops, their grain size increase while their band gaps decrease. Ag/ZnO/Si/Au heterojunction diodes have been produced based on ZnO1, ZnO2 and ZnO3 thin films. After that, effect of thickness of thin film on electrical properties of diodes produced depending on number of laser pulses has been analyzed in detail. I–V characteristics of ZnO/Si heterojunction diodes produced have also been measured in darkness environment and under illumination conditions (AM 1.5 solar radiation of 80 mW/cm2) and results obtained have been interpreted and a conclusion has been made in this work. Furthermore, ideality factors, barrier heights and serial resistivities of these diodes have been calculated using conventional thermionic emission theory, Norde and Cheung-Cheung methods and then results obtained from analytical methods have been interpreted in detail in the present article. ZnO heterojunction diodes have exhibited photovoltaic properties under illumination conditions. It has been observed that as thickness of ZnO thin film is increased, Jsc and η values of the hetero junction diodes are increased. ZnO-3A hetero junction diode has exhibited the most improved photovoltaic performance. We have also theoretically investigated photo-electric properties of ZnO-3A heterojunction diode using SCAPS-1D packed software. The resulted J–V characteristics have been found very similar to measured counterparts.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. N. Al-Hardan et al., A wide-band UV photodiode based on n-ZnO/p-Si heterojunctions. Sens. Actuators A 207, 61–66 (2014)

    Google Scholar 

  2. S. Sharma, C. Periasamy, A study on the electrical characteristic of n-ZnO/p-Si heterojunction diode prepared by vacuum coating technique. Superlattices Microstruct. 73, 12–21 (2014)

    ADS  Google Scholar 

  3. S. Sharma et al., Structural, electrical, and UV detection properties of ZnO/Si heterojunction diodes. IEEE Trans. Electron Devices 63(5), 1949–1956 (2016)

    ADS  Google Scholar 

  4. M. Jing-Jing et al., Rectifying and photovoltage properties of ZnO: A1/p-Si heterojunction. Chin. Phys. Lett. 27(10), 107304 (2010)

    ADS  Google Scholar 

  5. Faraz, S.M., et al., Electrical Characterization of Si/ZnO Nanorod PN Heterojunction Diode. Advances in Condensed Matter Physics, 2020. 2020.

  6. S.A. Mansour, F. Yakuphanoglu, Electrical-optical properties of nanofiber ZnO film grown by sol gel method and fabrication of ZnO/p-Si heterojunction. Solid State Sci. 14(1), 121–126 (2012)

    ADS  Google Scholar 

  7. W. Zhang et al., Influence of growth conditions on photovoltaic effect of ZnO/Si heterojunction. Sol. Energy Mater. Sol. Cells 92(8), 949–952 (2008)

    Google Scholar 

  8. M. Soylu, O. Savas, Electrical and optical properties of ZnO/Si heterojunctions as a function of the Mg dopant content. Mater. Sci. Semicond. Process. 29, 76–82 (2015)

    Google Scholar 

  9. L. Chen et al., Research on ZnO/Si heterojunction solar cells. J. Semicond. 38(5), 054005 (2017)

    ADS  Google Scholar 

  10. F. Bedia et al., Electrical characterization of n-ZnO/p-Si heterojunction prepared by spray pyrolysis technique. Phys. Procedia 55, 61–67 (2014)

    ADS  Google Scholar 

  11. S. Boudour et al., Optimization of defected ZnO/Si/Cu2O heterostructure solar cell. Opt. Mater. 98, 109433 (2019)

    Google Scholar 

  12. L. Mandal et al., Analysis of ZnO/Si heterojunction solar cell with interface defect, in Advances in computer, communication and control. (Springer, 2019), pp. 533–538

    Google Scholar 

  13. S.Y. Gezgin, H.Ş Kılıç, The electrical characteristics of ITO/CZTS/ZnO/Al and ITO/ZnO/CZTS/Al heterojunction diodes. Optik 182, 356–371 (2019)

    ADS  Google Scholar 

  14. S.Y. Gezgin, H.Ş Kiliç, Determination of electrical parameters of ITO/CZTS/CdS/Ag and ITO/CdS/CZTS/Ag heterojunction diodes in dark and illumination conditions. Opt. Quant. Electron. 51(11), 360 (2019)

    Google Scholar 

  15. S.Y. Gezgin, A. Houimi, H.Ş Kılıç, Production and photovoltaic characterisation of n-Si/p-CZTS heterojunction solar cells based on a CZTS ultrathin active layers. Optik 199, 163370 (2019)

    ADS  Google Scholar 

  16. I.R. Chávez-Urbiola et al., Development and characterization of photodiode n-ZnO/p-Si by radio frecuency sputtering, a sensor with low voltage operation and its response to visible and UV light. Thin Solid Films 669, 364–370 (2019)

    ADS  Google Scholar 

  17. M. Shaban, M. Zayed, H. Hamdy, Nanostructured ZnO thin films for self-cleaning applications. RSC Adv. 7(2), 617–631 (2017)

    ADS  Google Scholar 

  18. P.K. Kalita, B. Sarma, H. Das, Structural characterization of vacuum evaporated ZnSe thin films. Bull. Mater. Sci. 23(4), 313–317 (2000)

    Google Scholar 

  19. S. Prabahar, M. Dhanam, CdS thin films from two different chemical baths—structural and optical analysis. J. Cryst. Growth 285(1–2), 41–48 (2005)

    ADS  Google Scholar 

  20. Đekić, M., et al., Influence of deposition parameters on pulsed laser deposition of K0. 3MoO3 thin films. Bulletin of the Chemists and Technologists of Bosnia and Herzegovina, 2017. 48(1): p. 1.

  21. Vakulov, Z., et al. Size effects in LiNbO3 thin films fabricated by pulsed laser deposition. in Journal of Physics: Conference Series. 2018. IOP Publishing.

  22. P. Dai et al., Band-gap tunable (Cu2Sn) x/3 Zn 1–x S nanoparticles for solar cells. Chem. Commun. 46(31), 5749–5751 (2010)

    Google Scholar 

  23. A.S. Al-Asadi et al., Fabrication and characterization of ultraviolet photosensors from ZnO nanowires prepared using chemical bath deposition method. J. Appl. Phys. 119(8), 084306 (2016)

    ADS  Google Scholar 

  24. K. Davis et al., Band gap engineered zinc oxide nanostructures via a sol–gel synthesis of solvent driven shape-controlled crystal growth. RSC Adv. 9(26), 14638–14648 (2019)

    ADS  Google Scholar 

  25. J. Husna et al., Influence of annealing temperature on the properties of ZnO thin films grown by sputtering. Energy Procedia 25, 55–61 (2012)

    Google Scholar 

  26. Ismail, R.A., N.H. Abeduljabbar, and M. Fatehi, Effect of dipping time on the properties of Sb 2 S 3/Si heterojunction prepared by chemical bath deposition. Materials Res Express, 2019.

  27. E. Nasir, M. Abass, Characterization, morphology and electrical properties of chemically deposited nanocrystalline pbs/si heterojunction thin films. Chalcogenide Lett 13(6), 271–279 (2016)

    Google Scholar 

  28. M. Kumar, A. Kanjilal, T. Som, Effect of grain-boundaries on electrical properties of n-ZnO: Al/p-Si heterojunction diodes. AIP Adv. 3(9), 092126 (2013)

    ADS  Google Scholar 

  29. M. Yilmaz et al., Effect of NiOx’s film thickness on the electrical properties of Ni/p–NiOx/n-Si structures. J. Sandwich Struct. Mater. 23(4), 1383–1402 (2021)

    Google Scholar 

  30. S. Kapatel et al., Layer-engineered IV characteristics of p-Si/WS2 Van der Waals Heterostructure diode. Euro Phys J Plus 132(4), 1–6 (2017)

    Google Scholar 

  31. Y. Zhang et al., The microstructure evolution during MoS2 films growth and its influence on the MoS2 optical-electrical properties in MoS2/p-Si heterojunction solar cells. Superlattices Microstruct. 137, 106352 (2020)

    Google Scholar 

  32. J. Zhu et al., Heteroepitaxy of ZnO film on Si (111) substrate using a 3C–SiC buffer layer. Thin Solid Films 478(1–2), 218–222 (2005)

    ADS  Google Scholar 

  33. R. Gupta, K. Ghosh, P. Kahol, Fabrication and electrical characterization of Au/p-Si/STO/Au contact. Curr. Appl. Phys. 9(5), 933–936 (2009)

    ADS  Google Scholar 

  34. R. Gupta, K. Ghosh, P. Kahol, Temperature dependence of current–voltage characteristics of gold–strontium titanate thin film Schottky diode. Physica E 42(5), 1509–1512 (2010)

    ADS  Google Scholar 

  35. H. Bo et al., Characterization of AZO/p-Si heterojunction prepared by DC magnetron sputtering. Mater. Sci. Semicond. Process. 12(6), 248–252 (2009)

    Google Scholar 

  36. Yilmaz, M., et al., Effect of NiOx’s film thickness on the electrical properties of Ni/p–NiOx/n-Si structures. Journal of Sandwich Structures & Materials, 2019: p. 1099636219859198.

  37. S. Patil et al., LPG sensing by p-polyaniline/n-PbS heterojunction junction capacitance structure. Sens. Actuators, A 201, 387–394 (2013)

    Google Scholar 

  38. N.E. Koksal, M. Sbeta, A. Yildiz, GZO/Si photodiodes exhibiting high photocurrent-to-dark-current ratio. IEEE Trans. Electron Devices 66(5), 2238–2242 (2019)

    ADS  Google Scholar 

  39. S. Kapatel et al., Layer-engineered IV characteristics of p-Si/WS 2 Van der Waals Heterostructure diode. Euro. Phys. J. Plus 132(4), 191 (2017)

    Google Scholar 

  40. H. Soliman et al., Electronic and photovoltaic properties of Au/pyronine G (Y)/p-GaAs/Au: Zn heterojunction. J. Alloy. Compd. 530, 157–163 (2012)

    Google Scholar 

  41. H. Soliman et al., Electrical transport mechanisms and photovoltaic characterization of cobalt phthalocyanine on silicon heterojunctions. Thin Solid Films 516(23), 8678–8683 (2008)

    ADS  Google Scholar 

  42. S. Cheung, N. Cheung, Extraction of Schottky diode parameters from forward current-voltage characteristics. Appl. Phys. Lett. 49(2), 85–87 (1986)

    ADS  Google Scholar 

  43. Paul, C.A., et al., Exploration of organic additives-assisted vanadium pentoxide (V 2 O 5) nanoparticles for Cu/nV 2 O 5/p-Si Schottky diode applications. J. Materials Sci., 2018: p. 1–8.

  44. H.G.B. Olyaee, P.J. Foot, V. Montgomery, Electrical properties and I–V characteristics of 5, 14-dihydro-5, 7, 12, 14-tetraazapentacene doped Schottky barrier diode. J Theoretical Appl. Phys. 9(4), 315–319 (2015)

    ADS  Google Scholar 

  45. İ Orak, A. Kocyiğit, Ş Karataş, The analysis of the electrical and photovoltaic properties of Cr/p-Si structures using current-voltage measurements. SILICON 10(5), 2109–2116 (2018)

    Google Scholar 

  46. H. Norde, A modified forward I–V plot for Schottky diodes with high series resistance. J. Appl. Phys. 50(7), 5052–5053 (1979)

    ADS  Google Scholar 

  47. N. Basman, Effect of a new methacrylic monomer on diode parameters of Ag/p-Si Schottky contact. Informacije MIDEM 46(4), 190–196 (2017)

    ADS  Google Scholar 

  48. N.F. Habubi, A.O. Mousa, Fabrication and characterization of ZnO/p-Si heterojunction solar cell. World scientific news 18, 78–92 (2015)

    Google Scholar 

  49. R.A. Ismail, N.F. Abeduljabbar, M.W. Fatehi, Effect of dipping time on the properties of Sb2S3/Si heterojunction prepared by chemical bath deposition. Materials Research Express 6(4), 045915 (2019)

    ADS  Google Scholar 

  50. F. Liu et al., Beyond 8% ultrathin kesterite Cu2ZnSnS4 solar cells by interface reaction route controlling and self-organized nanopattern at the back contact. NPG Asia Materials 9(7), e401–e401 (2017)

    Google Scholar 

  51. Burgelman, M., et al., SCAPS manual. 2016, February.

  52. F.A. Mustafa, Optical properties of NaI doped polyvinyl alcohol films. Phys. Sci. Res. Int. 1(1), 1–9 (2013)

    MathSciNet  Google Scholar 

  53. E. Antar, Effect of γ-ray on optical characteristics of dyed PVA films. J. Radiation Res. Appl. Sci. 7(1), 129–134 (2014)

    Google Scholar 

  54. K. Kim et al., Simulations of chalcopyrite/c-Si tandem cells using SCAPS-1D. Sol. Energy 145, 52–58 (2017)

    ADS  Google Scholar 

  55. H. Heriche, Z. Rouabah, N. Bouarissa, New ultra thin CIGS structure solar cells using SCAPS simulation program. Int. J. Hydrogen Energy 42(15), 9524–9532 (2017)

    Google Scholar 

  56. Khan, A.D., et al., Optimization of efficient monolithic perovskite/silicon tandem solar cell. Optik, 2020: p. 164573.

  57. O. Simya, A. Mahaboobbatcha, K. Balachander, Compositional grading of CZTSSe alloy using exponential and uniform grading laws in SCAPS-ID simulation. Superlattices Microstruct. 92, 285–293 (2016)

    ADS  Google Scholar 

  58. Mukhopadhyay, K., P. Fermi Hilbert Inbaraj, and J. Joseph Prince, Thickness optimization of CdS/ZnO hybrid buffer layer in CZTSe thin film solar cells using SCAPS simulation program. Materials Research Innovations, 2019. 23(6): p. 319–329.

  59. Dweydari, A. and C. Mee, Work function measurements on (100) and (110) surfaces of silver. physica status solidi (a), 1975. 27(1): p. 223–230.

  60. D. Eastman, Photoelectric work functions of transition, rare-earth, and noble metals. Phys. Rev. B 2(1), 1 (1970)

    ADS  Google Scholar 

Download references

Acknowledgements

Authors kindly would like to thank, Selçuk University, High Technology Research and Application Center and Selçuk University, Selçuk University, Laser Induced Proton Therapy Application and Research Center for supplying with Infrastructure and Selçuk University, Scientific Research Projects Coordination (BAP) Unit for grands via projects with references of 14401025. Dr. Marc Burgelman’s group, University of Gent, Belgium for providing SCAPS-1D simulation program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serap Yiğit Gezgin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Akın, Ü., Houimi, A., Gezgin, B. et al. The electrical properties of ZnO/Si heterojunction diode depending on thin film thickness. J. Korean Phys. Soc. 81, 139–149 (2022). https://doi.org/10.1007/s40042-022-00499-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-022-00499-7

Keywords

  • ZnO thin film
  • Heterojunction diode
  • PLD
  • Ideality factor
  • Barrier height
  • Serial resistivity
  • SCAPS-1D