Skip to main content

Strain dependent magnetic properties of 1T-VSe2 monolayer

Abstract

Using the first principles calculations, we investigated the strain dependent magnetic properties of the 1T-VSe2 monolayer (up to ± 3%). We obtained a metallic band structure, and this feature was preserved under both compressive and tensile strain. The pristine system had a magnetic moment of 0.9 μB/unit cell and decreased to 0.68 μB /unit cell under − 3% compressive strain whereas it was increased to 1.03 μB/unit cell under + 3% tensile strain. The 1T-VSe2 monolayer had an in-plane magnetic anisotropy with a value of − 0.48 meV/cell. The in-plane anisotropy features were maintained in both compressive and tensile strains. The orbital resolved magnetic anisotropy indicated that the V atom contributed to the perpendicular magnetic anisotropy while the Se atom had an in-plane anisotropy. We found that the Se dominated the anisotropy. We also calculated the temperature dependent Curie temperature (TC). The pristine structure had a TC of 260 K, and the strain effect enhanced the TC. Particularly, the compressive strain affected further the exchange parameter resulting in substantial enhancement of the Curie temperature where a TC of 570 K was achieved at − 3% strain. Our finding regarding the strained VSe2 could help for further investigation in spintronics and straintronics applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M. Peres, A.K. Geim, Science 320, 1308 (2008)

    ADS  Article  Google Scholar 

  2. D. Kim, A. Hashmi, C. Hwang, J. Hong, Surf. Sci. 610, 27 (2013)

    ADS  Article  Google Scholar 

  3. S. Tongay, J. Zhou, C. Ataca, K. Lo, T.S. Matthews, J. Li, J.C. Grossman, J. Wu, Nano Lett. 12, 5576 (2012)

    ADS  Article  Google Scholar 

  4. L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X.H. Chen, Y. Zhang, Nat. Nanotechnol. 9, 372 (2014)

    ADS  Article  Google Scholar 

  5. T. Dietl, H. Ohno, Rev. Mod. Phys. 86, 187 (2014)

    ADS  Article  Google Scholar 

  6. D.D. Awschalom, M.E. Flatté, Nat. Phys. 3, 153 (2007)

    Article  Google Scholar 

  7. K. Zhao, Q. Wang, Appl. Surf. Sci. 505, 144620 (2020)

    Article  Google Scholar 

  8. Z. Jiang, P. Wang, X. Jiang, J. Zhao, Nanoscale. Horiz. 3, 335 (2018)

    ADS  Article  Google Scholar 

  9. Y. Hu, X. Liu, Z. Shen, Z. Luo, Z. Chen, X. Fan, Nanoscale 12, 11627 (2020)

    Article  Google Scholar 

  10. Z. Fei et al., Nat. Mater. 17, 778 (2018)

    ADS  Article  Google Scholar 

  11. C. Gong et al., Nature 546, 265 (2017)

    ADS  Article  Google Scholar 

  12. B. Huang et al., Nature 546, 270 (2017)

    ADS  Article  Google Scholar 

  13. H.L. Zhuang, P. Kent, R.G. Hennig, Phys. Rev. B 93, 134407 (2016)

    ADS  Article  Google Scholar 

  14. Z. Zhang, J. Shang, C. Jiang, A. Rasmita, W. Gao, T. Yu, Nano Lett. 19, 3138 (2019)

    ADS  Article  Google Scholar 

  15. X. Zhang et al., Nat. Commun. 12, 1 (2021)

    ADS  Article  Google Scholar 

  16. D.J. O’Hara et al., Nano Lett. 18, 3125 (2018)

    ADS  Article  Google Scholar 

  17. M. Bonilla et al., Nat. Nanotechnol. 13, 289 (2018)

    ADS  Article  Google Scholar 

  18. W. Yu et al., Adv. Mater. 31, 1903779 (2019)

    Article  Google Scholar 

  19. Z. Popov, N. Mikhaleva, M. Visotin, A. Kuzubov, S. Entani, H. Naramoto, S. Sakai, P. Sorokin, P. Avramov, PCCP 18, 33047 (2016)

    ADS  Article  Google Scholar 

  20. G. Duvjir, B.K. Choi, T.T. Ly, N.H. Lam, K. Jang, D.D. Dung, Y.J. Chang, J. Kim, Nanotechnology 32, 364002 (2021)

    Article  Google Scholar 

  21. J. Liu, W.-J. Hou, C. Cheng, H.-X. Fu, J.-T. Sun, S. Meng, J. Phys: Condens. Matter 29, 255501 (2017)

    ADS  Google Scholar 

  22. H. Pan, J. Phys. Chem. C. 118, 13248 (2014)

    Article  Google Scholar 

  23. G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996)

    ADS  Article  Google Scholar 

  24. G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)

    ADS  Article  Google Scholar 

  25. P. Blochl, Phys. Rev. B 50, 17953 (1994)

    ADS  Article  Google Scholar 

  26. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    ADS  Article  Google Scholar 

  27. S. Dudarev, G. Botton, S. Savrasov, C. Humphreys, A. Sutton, Phys. Rev. B 57, 1505 (1998)

    ADS  Article  Google Scholar 

  28. A. Liechtenstein, V. Anisimov, J. Zaanen, Phys. Rev. B 52, R5467 (1995)

    ADS  Article  Google Scholar 

  29. V.I. Anisimov, F. Aryasetiawan, A. Lichtenstein, J. Phys: Condens. Matter 9, 767 (1997)

    ADS  Google Scholar 

  30. H.-R. Fuh, C.-R. Chang, Y.-K. Wang, R.F. Evans, R.W. Chantrell, H.-T. Jeng, Sci. Rep. 6, 32625 (2016)

    ADS  Article  Google Scholar 

  31. Z. Guan, S. Ni, Nanoscale 12, 22735 (2020)

    Article  Google Scholar 

  32. R.F. Evans, W.J. Fan, P. Chureemart, T.A. Ostler, M.O. Ellis, R.W. Chantrell, J. Phys: Condens. Matter 26, 103202 (2014)

    ADS  Google Scholar 

  33. R. Evans. URL http://vampire.york.ac.uk (2016)

  34. D.-S. Wang, R. Wu, A. Freeman, Phys. Rev. B 47, 14932 (1993)

    ADS  Article  Google Scholar 

  35. I. Khan, J. Hong, J. Korean Phys. Soc. 72, 1343 (2018)

    ADS  Article  Google Scholar 

  36. J. S. Smart. Effective field theories of magnetism. Saunders 2 (1966)

  37. H.L. Zhuang, Y. Xie, P. Kent, P. Ganesh, Phys. Rev. B 92, 035407 (2015)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (2022R1A2C1004440).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jisang Hong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Son, J., Marfoua, B. & Hong, J. Strain dependent magnetic properties of 1T-VSe2 monolayer. J. Korean Phys. Soc. 81, 133–138 (2022). https://doi.org/10.1007/s40042-022-00498-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-022-00498-8

Keywords

  • VSe2
  • Strain