Skip to main content

Plasma information-based virtual metrology (PI-VM) and mass production process control

Abstract

In this paper, we review the development of plasma engineering technology that improves dramatically the production efficiency of OLED (organic light-emitting diode) displays and semiconductor manufacturing by utilizing a process monitoring methodology based on the physical domain knowledge. The domain knowledge consists of plasma-heating and sheath physics, plasma chemistry and plasma-material surface reaction kinetics, and plasma diagnostics. Based on this, a plasma information-based virtual metrology (PI-VM) algorithm was developed drastically enhanced process prediction performance by parameterizing plasma information (PI) which can trace the states of processing plasmas. PI-VM has superior process prediction accuracy compared to the classical statistics-based virtual metrologies. The developed PI-VM algorithms adopted for practical processing issues such as the control and management of the OLED-display mass production demonstrated savings of approximately 25% of the yield loss over the past 5 years. This improvement was achieved with the development of FDC (fault detection and classification) and APC (advanced process control) logic, which can be developed through the analysis of the physical characteristics of the feature parameters used in PI-VM with the evaluation of their contributions and their correlations to the processing results. PI-VM provides leverage that can be applied in the development of process equipment and factory automation technologies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. G.E. Moore, Moore’s law. Electronics 38, 113–118 (1965)

    Google Scholar 

  2. H. Abe, M. Yoneda, N. Fujiwara, Developments of plasma etching technology for fabricating semiconductor devices. Jpn. J. Appl. Phys. 47, 1435–1455 (2008)

    ADS  Article  Google Scholar 

  3. S. Samukawa, M. Hori, S. Rauf, J. Tachibana, P. Bruggeman, G. Kroesen, J.C. Whitehead, A.B. Murphy, A.F. Gutsol, S. Starikovskaia, U. Kortshagen, J.-P. Boeuf, T.J. Sommerer, M.J. Kushner, U. Czarnetzki, N. Mason, The 2012 plasma roadmap. J. Phys. D Appl. Phys. 45, 253001 (2012)

    ADS  Article  Google Scholar 

  4. S.-H. Lee, J.-H. Cho, S.-R. Huh, G.-H. Kim, Standing wave effect on plasma distribution in an inductively coupled plasma source with a short antenna. J. Phys. D Appl. Phys. 47, 015205 (2014)

    ADS  Article  Google Scholar 

  5. W.-K. Loh, J.-Y. Yun, A parallel algorithm for robust fault detection in semiconductor manufacturing processes. Clust. Comput. 17, 643–651 (2014)

    Article  Google Scholar 

  6. C.J. Spanos, H.-F. Guo, A. Miller, J. Levine-Parrill, Real-time statistical process control using tool data (semiconductor manufacturing). IEEE Trans. Semi. Manuf. 5, 4 (1992)

    Article  Google Scholar 

  7. F.-T. Cheng, H.-C. Huang, C.-A. Kao, Developing an automatic virtual metrology system. IEEE Trans. Auto. Sci. Eng. 9, 1 (2012)

    Article  Google Scholar 

  8. H.D. Lee, M.H. Lee, H.W. Cho, C. Han, K.S. Chang, Online quality monitoring using multivariate statistical methods in continuous-stirred MMA-VA copolymerization process. Hwahak Konghak 35, 5 (1997)

    Google Scholar 

  9. S.J. Van Albada, P.A. Robinson, Transformation of arbitrary distributions to the normal distribution with application to EEG test-retest reliability. J. NeuroSci. Method 161, 2 (2007)

    Google Scholar 

  10. A.T.-C. Koh, N.F. Thornhill, V.J. Law, Principal components analysis of plasma harmonics in end-point detection of photoresist stripping. Electron. Lett. 35, 1383–1385 (1999)

    ADS  Article  Google Scholar 

  11. D.A. White, D. Boning, S.W. Butler, G.G. Barna, Spatial characterization of wafer state using principal component analysis of optical emission spectra in plasma etch. IEEE Trans. Semicond. Manuf. 10, 1 (1997)

    Article  Google Scholar 

  12. B. Schölkopf, A. Smola, K.-R. Müller, Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10, 5 (1998)

    Article  Google Scholar 

  13. R. Shadmehr, D. Angell, P.B. Chou, G.S. Oehrlein, R.S. Jaffe, Principal component analysis of optical emission spectroscopy and mass spectroscopy: application to reactive ion etch process parameter estimating using neural networks. J. Elcectrochem. Soc. 139, 907 (1992)

    ADS  Article  Google Scholar 

  14. T.-H. Lin, F.-T. Cheng, W.-M. Wu, C.-A. Kao, A.-J. Ye, F.-T. Chang, NN-based key-variable selection method for enhancing virtual metrology accuracy. IEEE Trans. Semi. Manuf. 22, 1 (2009)

    Article  Google Scholar 

  15. M.A. Liebermann, A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, 2nd edn. (Wiley, New York, 2005)

    Book  Google Scholar 

  16. U. Fantz, Basics of plasma spectroscopy. Plasma Sour. Sci. Technol. 15, S137–S147 (2006)

    ADS  Article  Google Scholar 

  17. V.A. Godyak, R.B. Piejak, B.M. Alexandrovich, The electron-energy distribution function in a shielded argon radiofrequency deductive discharge. Plasma Sour. Sci. Technol. 4, 3 (1995)

    Article  Google Scholar 

  18. V.A. Godyak, Electrical and plasma parameters of ICP with high coupling efficiency. Plasma Sourc. Sci. Technol. 20, 2 (2011)

    Article  Google Scholar 

  19. V.A. Godyak, R.B. Piejak, B.M. Alexandrovich, Measurement of electron energy distribution in low-pressure RF discharges. Plasma Sour. Sci. Technol. 1, 36 (1992)

    ADS  Article  Google Scholar 

  20. V.A. Godyak, R.B. Piejak, B.M. Alexandrovich, Electron energy distribution function measurements and plasma parameters in inductively coupled argon plasma. Plasma Sour. Sci. Technol. 11, 4 (2002)

    Article  Google Scholar 

  21. J.B. Boffard, R.O. Jung, C.C. Lin, L.E. Aneskavich, A.E. Wendt, Optical diagnostics for characterization of electron energy distributions: argon inductively coupled plasmas. Plasma Sour. Sci. Technol. 20, 5 (2011)

    Article  Google Scholar 

  22. F.M. Dias, T.K. Popov, Simple techniques to restore time-averaged Langmuir probe characteristics. J. Phys. Conf. Ser. 44, 029 (2006)

    Article  Google Scholar 

  23. J.T. Gudmundsson, On the effect of the electron energy distribution on the plasma parameters of an argon discharge: a global (volume-averaged) model study. Plasma Sour. Sci. Technol. 10, 76–81 (2001)

    ADS  Article  Google Scholar 

  24. S. Park, J.-M. Choe, H.-J. Roh, G.-H. Kim, Characteristics of a non-Maxwellian electron energy distribution in a low-pressure argon plasma. J. Kor. Phys. Soc. 64, 12 (2014)

    Google Scholar 

  25. J.T. Gudmundsson, A.M. Marakhtanov, K.K. Patel, V.P. Gopinath, M.A. Liebermann, On the plasma parameters of a planar inductive oxygen discharge. J. Phys. D: Appl. Phys. 33, 1323–1331 (2000)

    ADS  Article  Google Scholar 

  26. T.I. Gombosi, Gaskinetic Theory (Cambridge University Press, New York, 1994)

    Book  Google Scholar 

  27. S. Park, S. Jeong, Y. Jang, S. Ryu, H.-J. Roh, G.-H. Kim, Enhancement of the virtual metrology performance for plasma-assisted oxide etching processes by using plsma information (PI) parameters. IEEE Trans. Semi. Manuf. 28, 3 (2015)

    Article  Google Scholar 

  28. S. Park, T. Cho, Y. Jang, Y. Noh, Y. Choi, T. Cha, J. Lee, B. Kim, J.-H. Yang, J.-J. Hong, Y. Park, G.-H. Kim, W.-H. Jang, Application of PI-VM for management of the metal target plasma etching processes in OLED display manufacturing. Plasma Phys. Control. Fusion. 61, 014032 (2019)

    ADS  Article  Google Scholar 

  29. V.A. Godyak, V.P. Meytlis, H.R. Strauss, Tonks-Langmuir problem for a bi-Maxwellian plasma. IEEE Trans. Plasma Sci. 23, 4 (1995)

    Article  Google Scholar 

  30. M. Fukasawa, A. Kawashima, N. Kuboi, H. Takagi, Y. Tanaka, H. Sakayori, K. Oshima, K. Nagahta, T. Tatsumi, Prediction of fluctuations in plasma-wall interactions using an equipment engineering system. Jpn. J. Appl. Phys. 48, 08HC01 (2009)

    Google Scholar 

  31. T. Ichiki, S. Takayangi, Y. Horiike, Precise chrome etching in downstream chlorine plasmas with electron depletion through negative ion production. J. Electrochem. Soc. 147, 4289–4293 (2000)

    ADS  Article  Google Scholar 

  32. K.H. Baek, Y. Jung, G.J. Min, C. Kang, H.K. Cho, J.T. Moon, Chamber maintenance and fault detection technique for a gate etch process via self-excited electron resonance spectroscopy. J. Vac. Sci. Technol. B 23, 125–129 (2005)

    Article  Google Scholar 

  33. Plasma Property Database serviced by KISTI (Korea Institute of Science and Technology Information): http://plasma.kisti.re.kr/webs/property/property_molecule.jsp

  34. S. Park, H.-J. Roh, Y. Jang, S. Jeong, S. Ryu, J.-M. Choe, G.-H. Kim, Vacuum pump age effects by the exposure to the corrosive gases on the Cr etch rate as observed using optical emission spectroscopy in an Ar/O2/Cl2 mixed plasma. Thin Solid Films 603, 154–159 (2016)

    ADS  Article  Google Scholar 

  35. J.E. Allen, A note on the Bohm criterion for electronegative gases. Plasma Sour. Sci. Technol. 13, 1 (2004)

    Article  Google Scholar 

  36. H. Amemiya, Sheath formation criterion and ion flux for a non-Maxwellian plasma containing negative ions. J. Phys. Soc. Jpn. 67, 1955–1962 (1998)

    ADS  Article  Google Scholar 

  37. K.H. Baek et al., An effective procedure for sensor variable selection and utilization in plasma etching for semiconductor manufacturing. Comput. Chem. Eng. 61, 20–29 (2014)

    Article  Google Scholar 

  38. Y.S. Choi, J.U. Yun, S.E. Park, Flat panel display glass: current status and future. J. Non-Cryst. Solids. 431, 2–7 (2016)

    ADS  Article  Google Scholar 

  39. J.F. Wagner, R. Hoffman, Thin, fast, and flexible. IEEE Spectr. 48, 5 (2011)

    Google Scholar 

  40. C.I. Park, M. Seong, M.A. Kim, D. Kim, H. Jung, M. Cho, S.H. Lee, H. Lee, S. Min, J. Kim, M. Kim, J.-H. Park, S. Kwon, B. Kim, S.J. Kim, W. Park, J.-Y. Yang, S. Yoon, I. Kang, World’s first large size 77-inch transparent flexible OLED display. J. SID 26, 5 (2018)

    Google Scholar 

  41. Y.R. Do, Y.-C. Kim, Y.-W. Song, Y.-H. Lee, Enhanced light extraction efficiency from organic light emitting diodes by insertion of a two-dimensional photonic crystal structure. J. Appl. Phys. 96, 12 (2004)

    Article  Google Scholar 

  42. T. Arai, Y. Shiraishi, Manufacturing issues for oxide TFT technologies for large-sized AMOLED displays. SID 2012 Digest 43, 1 (2012)

    Google Scholar 

  43. C. Cardinaud et al., Plasma etching: principles, mechanisms, application to micro- and nano-technologies. Appl. Surf. Sci. 164, 72–83 (2000)

    ADS  Article  Google Scholar 

  44. S. Park, Y. Kyung, J. Lee, Y. Jang, T. Cha, Y. Noh, Y. Choi, B. Kim, T. Cho, R. Seo, J.-H. Yang, Y. Jang, S. Ryu, G.-H. Kim, Cause analysis of the faults in HARC etching processes by using the PI-VM model for OLED display manufacturing. Plasma Proc. Polymer. 16, 9 (2019)

    Google Scholar 

  45. P. Briaud, G. Turban, B. Grolleau, Energy distribution of ions in plasma etching reactors. MRS Proc. 68, 109 (1986)

    Article  Google Scholar 

  46. S. Karecki, R. Chatterjee, L. Pruette, R. Reif, T. Sparks, L. Beu, V. Vartanian, Evaluation of pentafluoroethane and 1,1-difluoroethane for a dielectric etch application in an inductively coupled plasma etch tool. Jpn. J. Appl. Phys. 39, 7S (2000)

    Article  Google Scholar 

  47. S. Agraharam, D.W. Hess, P.A. Kohl, S.A.B. Allen, Plasma chemistry in fluorocarbon film deposition from pentafluoroethane/argon mixtures. J. Vac. Sci. Technol. A 17, 6 (1999)

    Article  Google Scholar 

  48. H.K. Lee, K.H. Baek, K. Shin, Resolving critical dimension drift over time in plasma etching through virtual metrology based wafer-to-wafer control. Jpn. J. Appl. Phys. 56, 6 (2017)

    Google Scholar 

  49. P. Diomede, D. Kim, D.J. Economou, Particle-in-cell simulation of electron and ion energy distributions in dc/rf hybrid capacitively-coupled plasmas. AlChE J. 59, 9 (2013)

    Article  Google Scholar 

  50. S. Samukawa, V.M. Donnelly, M.V. Malyshev, Effects of discharge frequency in plasma etching and ultrahigh-frequency plasma source for high-performance etching for ultralarge-scale integrated circuits. Jpn. J. Appl. Phys. 39, 1583 (2000)

    ADS  Article  Google Scholar 

  51. A.V. Vasenkov, X. Lim, G.S. Oehrlein, M.J. Kushner, Properties of c-C4F8 inductively coupled plasmas. II. Plasma chemistry and reaction mechanism for modeling of Ar/c-C4F8/O2 discharges. J. Vac. Sci. Technol. A. 22, 511 (2004)

    ADS  Article  Google Scholar 

  52. N.V. Chawla, K.W. Bowyer, L.O. Hall, W.P. Kegelmeyer, SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321 (2002)

    MATH  Article  Google Scholar 

  53. S. Park, Y. Jang, T. Cha, Y. Noh, Y. Choi, J. Lee, J. Seong, B. Kim, T. Cho, Y. Park, R. Seo, J.-H. Yang, G.-H. Kim, Predictive control of the plasma processes in the OLED display mass production referring to the discontinuity qualifying PI-VM. Phys. Plasmas. 27, 083507 (2020)

    ADS  Article  Google Scholar 

  54. C.M. Huard, S. Sriraman, A. Paterson, M.J. Kushner, Transient behavior in quasi-atomic layer etching of silicon oxide and silicon nitride in fluorocarbon plasmas. J. Vac. Sci. Technol. A. 36, 6 (2018)

    Article  Google Scholar 

  55. A.R. Godfrey, S.J. Ullal, L.B. Braly, E.A. Edelberg, V. Vahedi, E.S. Aydil, New diagnostic method for monitoring plasma reactor walls: multiple total internal reflection Fourier transform infrared surface probe. Rev. Sci. Inst. 72, 8 (2001)

    Article  Google Scholar 

  56. Schubert, E. F. (2004). Educational Resources. Refractive Index and Extinction Coefficient of Materials. New York: Rensselaer Polytechnic Institute

    Google Scholar 

  57. H.-J. Roh, S. Ryu, Y. Jang, N.-K. Kim, Y. Jin, S. Park, G.-H. Kim, Development of the virtual metrology for the nitride thickness in multi-layer plasma-enhanced chemical vapor deposition using plasma information variables. IEEE Trans. Semi. Manuf. 31, 2 (2018)

    Article  Google Scholar 

  58. J.-W. Kwon, S. Ryu, J. Park, H. Lee, Y. Jang, S. Park, G.-H. Kim, Development of virtual metrology using plasma information variables to predict Si etch profile processes by SF6/O2/Ar capacitively coupled plasma. Materials 14, 11 (2021)

    Article  Google Scholar 

  59. Y. Jang, H.-J. Roh, S. Park, S. Jeong, S. Ryu, J.-W. Kwon, N.-K. Kim, G.-H. Kim, Characteristics of a plasma information variable in phenomenology-based, statistically-tuned virtual metrology to predict silicon dioxide etching depth. Current Appl. Phys. 19, 1068–1075 (2019)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work is technically supported by Vice Presidents Jaehyung Lee and Jeonggen Yoo and by Executive Vice President Insoo Cho of Samsung Display Co., Ltd, and is supported by a National Research Council of Science & Technology (NST) Grant from the Korea Government (MSIT) (No.CRC-20-01-NFRI), the Brain Korea 21 FOUR Program (No.4199990314119), the MOTIE (Ministry of Trade, Industry & Energy (20006499, 20006534), and the KSRC (Korea Semiconductor Research Consortium) support program for the development of future semiconductor devices.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seolhye Park or Gon-Ho Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Park, S., Seong, J., Jang, Y. et al. Plasma information-based virtual metrology (PI-VM) and mass production process control. J. Korean Phys. Soc. 80, 647–669 (2022). https://doi.org/10.1007/s40042-022-00452-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-022-00452-8

Keywords

  • PI (plasma information) parameter
  • Virtual metrology
  • Etching
  • CVD (chemical vapor deposition)
  • OLED (organic light-emitting diode)
  • FDC (fault detection and classification)
  • APC (advanced process control)
  • Mass production