Skip to main content
Log in

Strain-effect transistor with Y-shaped graphene junctions

  • Original Paper - Condensed Matter
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Many theoretical suggestions and novel outlooks have been articulated in investigations into the pseudo-magnetic fields (PMFs) that arise in strained graphene. Application of triaxial strain to graphene is perhaps the most representative approach to strain engineering of graphene, with its emergent uniform PMFs. Here, we conduct quantum transport calculations and demonstrate that a Y-shaped graphene junction exhibits a current switching effect by means of strain control. We report that both electrical and thermoelectric currents are modulated by controlling the elastic strain in the junction region, exhibiting a noticeable level of current on/off ratio. The strain-tunability of the current switching is revealed to be more efficient for larger chemical potentials due to the opening of pseudo-magnetic Landau levels in our device. Strain-induced modulation of graphene’s electronic and thermoelectric properties with the emergent PMFs has the potential to benefit graphene-based nanoelectronic device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I. Grigorieva, S. Dubonos, A. Firsov, Nature 438, 197 (2005)

    Article  ADS  Google Scholar 

  2. Y. Zhang, Y.-W. Tan, H.L. Stormer, P. Kim, Nature 438, 201 (2005)

    Article  ADS  Google Scholar 

  3. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Nano Lett. 8, 902 (2008)

    Article  ADS  Google Scholar 

  4. C. Lee, X. Wei, J.W. Kysar, J. Hone, Science 321, 385 (2008)

    Article  ADS  Google Scholar 

  5. A.C. Neto, F. Guinea, N.M. Peres, K.S. Novoselov, A.K. Geim, Phys. Rev. Mod. 81, 109 (2009)

    Article  ADS  Google Scholar 

  6. M. Katsnelson, K. Novoselov, A. Geim, Nat. Phys. 2, 620 (2006)

    Article  Google Scholar 

  7. M. Cheli, G. Fiori, G. Iannaccone, IEEE Trans. Electron Devices 56, 2979 (2009)

    Article  ADS  Google Scholar 

  8. V. Ryzhii, M. Ryzhii, A. Satou, T. Otsuji, N. Kirova, J. Appl. Phys. 105, 104510 (2009)

    Article  ADS  Google Scholar 

  9. Y. Lu, B. Goldsmith, D.R. Strachan, J.H. Lim, Z. Luo, A.C. Johnson, Small 6, 2748 (2010)

    Article  Google Scholar 

  10. M.Y. Han, J.C. Brant, P. Kim, Phys. Rev. Lett. 104, 056801 (2010)

    Article  ADS  Google Scholar 

  11. B. Terrés, J. Dauber, C. Volk, S. Trellenkamp, U. Wichmann, C. Stampfer, Appl. Phys. Lett. 98, 032109 (2011)

    Article  ADS  Google Scholar 

  12. J. Moser, A. Bachtold, Appl. Phys. Lett. 95, 173506 (2009)

    Article  ADS  Google Scholar 

  13. X. Liu, J.B. Oostinga, A.F. Morpurgo, L.M. Vandersypen, Phys. Rev. B. 80, 121407 (2009)

    Article  ADS  Google Scholar 

  14. S. Dröscher, H. Knowles, Y. Meir, K. Ensslin, T. Ihn, Phys. Rev. B 84, 073405 (2011)

    Article  ADS  Google Scholar 

  15. J. Son, S. Lee, S.J. Kim, B.C. Park, H.-K. Lee, S. Kim, J.H. Kim, B.H. Hong, J. Hong Nat. Commun. 7, 1 (2016)

    ADS  Google Scholar 

  16. F. Withers, M. Dubois, A.K. Savchenko, Phys. Rev. B 82, 073403 (2010)

    Article  ADS  Google Scholar 

  17. M. Settnes, S.R. Power, A.-P. Jauho, Phys. Rev. B 93, 035456 (2016)

    Article  ADS  Google Scholar 

  18. A. Georgi, P. Nemes-Incze, R. Carrillo-Bastos, D. Faria, S. Viola Kusminskiy, D. Zhai, M. Schneider, D. Subramaniam, T. Mashoff, N.M. Freitag, M. Liebmann, M. Pratzer, L. Wirtz, C.R. Woods, R.V. Gorbachev, Y. Cao, K.S. Novoselov, N. Sandler, M. Morgenstern, Nano Lett. 17, 2240 (2017)

    Article  ADS  Google Scholar 

  19. F. Guinea, M. Katsnelson, A. Geim, Nat. Phys. 6, 30 (2010)

    Article  Google Scholar 

  20. N. Levy, S. Burke, K. Meaker, M. Panlasigui, A. Zettl, F. Guinea, A.C. Neto, M.F. Crommie, Science 329, 544 (2010)

    Article  ADS  Google Scholar 

  21. V.M. Pereira, A.C. Neto, N. Peres, Phys. Rev. B 80, 045401 (2009)

    Article  ADS  Google Scholar 

  22. S.-M. Choi, S.-H. Jhi, Y.-W. Son, Phys. Rev. B 81, 081407 (2010)

    Article  ADS  Google Scholar 

  23. G. Cocco, E. Cadelano, L. Colombo, Phys. Rev. B 81, 241412 (2010)

    Article  ADS  Google Scholar 

  24. M. Neek-Amal, L. Covaci, K. Shakouri, F. Peeters, Phys. Rev. B 88, 115428 (2013)

    Article  ADS  Google Scholar 

  25. S.-Y. Li, Y. Su, Y.-N. Ren, L. He, Phys. Rev. Lett. 124, 106802 (2020)

    Article  ADS  Google Scholar 

  26. F. Guinea, A. Geim, M. Katsnelson, K. Novoselov, Phys. Rev. B 81, 035408 (2010)

    Article  ADS  Google Scholar 

  27. T. Low, F. Guinea, Nano Lett. 10, 3551 (2010)

    Article  ADS  Google Scholar 

  28. A. Sakhaee-Pour, M. Ahmadian, A. Vafai, Solid State Commun. 147, 336 (2008)

    Article  ADS  Google Scholar 

  29. Q. Liu, M. Zhang, L. Huang, Y. Li, J. Chen, C. Li, G. Shi, ACS Nano 9, 12320 (2015)

    Article  Google Scholar 

  30. H. Tian, Y. Shu, Y.-L. Cui, W.-T. Mi, Y. Yang, D. Xie, T.-L. Ren, Nanoscale 6, 699 (2014)

    Article  ADS  Google Scholar 

  31. V. Eswaraiah, K. Balasubramaniam, S. Ramaprabhu, Nanoscale 4, 1258 (2012)

    Article  ADS  Google Scholar 

  32. X. Li, T. Yang, Y. Yang, J. Zhu, L. Li, F.E. Alam, X. Li, K. Wang, H. Cheng, C.-T. Lin et al., Adv. Funct. Mater. 26, 1322 (2016)

    Article  Google Scholar 

  33. A. McRae, G. Wei, A. Champagne, Phys. Rev. Appl. 11, 054019 (2019)

    Article  ADS  Google Scholar 

  34. A. Weiße, G. Wellein, A. Alvermann, H. Fehske, Rev. Mod. Phys. 78, 275 (2006)

    Article  ADS  Google Scholar 

  35. C.W. Groth, M. Wimmer, A.R. Akhmerov, X. Waintal, New J. Phys. 16, 063065 (2014)

    Article  ADS  Google Scholar 

  36. G. Verbiest, S. Brinker, C. Stampfer, Phys. Rev. B 92, 075417 (2015)

    Article  ADS  Google Scholar 

  37. L.D. Landau, E.M. Lifshitz, Theory of Elasticity (Butterworth-Heinemann, Oxford, 1986)

    MATH  Google Scholar 

  38. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1997)

    Google Scholar 

  39. M.R. Masir, P. Vasilopoulos, F. Peeters, J. Phys. Condens. Matter. 23, 315301 (2011)

    Article  Google Scholar 

  40. N. Myoung, J.-W. Ryu, H.C. Park, S.J. Lee, S. Woo, Phys. Rev. B 100, 045427 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author thanks Dr. Hee Chul Park for the fruitful discussion, and Ms. Seunghyun Jeon for the assistance and technical support in computational tasks. The author also appreciates Mr. Rasmussen for the thorough consultation on English of the manuscript. This work is funded by Chosun University (2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nojoon Myoung.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Myoung, N. Strain-effect transistor with Y-shaped graphene junctions. J. Korean Phys. Soc. 80, 490–495 (2022). https://doi.org/10.1007/s40042-022-00451-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-022-00451-9

Keywords

Navigation