Skip to main content

Laser wakefield electron acceleration with PW lasers and future applications

Abstract

Laser wakefield acceleration (LWFA), owing to its large acceleration field, is a promising method for overcoming the limitations of radio-frequency linear accelerators. Recent demonstrations of petawatt (PW) lasers have afforded opportunities for further advancing research on LWFA. The research group at the ultrashort quantum beam facility (UQBF), Advanced Photonics Research Institute (APRI), Gwangju institute of science and Technology (GIST), developed PW lasers in 2010 and successfully applied these PW lasers to LWFA. LWFA research involving PW lasers was succeeded by the Center for Relativistic Laser Science (CoReLS), Institute for Basic Science (IBS). In this review, we summarize the research results from UQBF and CoReLS pertaining to LWFA.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. T. Tajima, J.M. Dawson, Laser electron accelerator. Phys. Rev. Lett. 43, 267 (1979)

    ADS  Article  Google Scholar 

  2. F. Wang, C. Adolphsen, C. Nantista, Performance limiting effects in X-band accelerators. Phys. Rev. Spec. Top. Accel. Beams 14, 010401 (2011)

    ADS  Article  Google Scholar 

  3. V. Malka, J. Er, Y.A. Gauduel, E. Lefebvre, A. Rousse, K.T.A. Phuoc, Principles and applications of compact laser—plasma accelerators. Nat. Phys. 4, 447 (2008)

    Article  Google Scholar 

  4. W. Leemans, E. Esarey, Laser-driven plasma-wave electron accelerators. Phys. Today 62, 44 (2009)

    Article  Google Scholar 

  5. E. Esarey, C. Schroeder, W. Leemans, Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81, 1229 (2009)

    ADS  Article  Google Scholar 

  6. W. Lu, C. Huang, M. Zhou, W.B. Mori, T. Katsouleas, Nonlinear theory for relativistic plasma Wakefields in the Blowout regime. Phys. Rev. Lett. 96, 165002 (2006)

    ADS  Article  Google Scholar 

  7. A. Pukhov, J. Meyer-ter-Vehn, Laser wake field acceleration: the highly non-linear broken-wave regime. Appl. Phys. B Lasers Opt. 74, 355 (2002)

    ADS  Article  Google Scholar 

  8. W.P. Leemans, B. Nagler, A.J. Gonsalves, C. Tóth, K. Nakamura, C.G.R. Geddes, E. Esarey, C.B. Schroeder, S.M. Hooker, GeV electron beams from a centimetre-scale accelerator. Nat. Phys. 2, 696 (2006)

    Article  Google Scholar 

  9. J. Faure, C. Rechatin, A. Norlin, A. Lifschitz, Y. Glinec, V. Malka, Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses. Nature 444, 737 (2006)

    ADS  Article  Google Scholar 

  10. A. Pak, K.A. Marsh, S.F. Martins, W. Lu, W.B. Mori, C. Joshi, Injection and trapping of tunnel-ionized electrons into laser-produced wakes. Phys. Rev. Lett. 104, 025003 (2010)

    ADS  Article  Google Scholar 

  11. C. Thaury, E. Guillaume, A. Lifschitz, K.T.A. Phuoc, M. Hansson, G. Grittani, J. Gautier, J.-P. Goddet, A. Tafzi, O. Lundh, V. Malka, Shock assisted ionization injection in laser-plasma accelerators. Sci. Rep. 5, 16310 (2015)

    ADS  Article  Google Scholar 

  12. A. Modena, Z. Najmudin, A.E. Dangor, C.E. Clayton, K.A. Marsh, C. Joshi, V. Malka, C.B. Darrow, C. Danson, D. Neely, F.N. Walsh, Electron acceleration from the breaking of relativistic plasma waves. Nature 377, 606 (1995)

    ADS  Article  Google Scholar 

  13. C. Geddes, K. Nakamura, G. Plateau, C. Toth, E. Cormier-Michel, E. Esarey, C. Schroeder, J. Cary, W. Leemans, Plasma-density-gradient injection of low absolute-momentum-spread electron bunches. Phys. Rev. Lett. 100, 215004 (2008)

    ADS  Article  Google Scholar 

  14. C.J. Zhang, J.F. Hua, X.L. Xu, F. Li, C.-H. Pai, Y. Wan, Y.P. Wu, Y.Q. Gu, W.B. Mori, C. Joshi, W. Lu, capturing relativistic wakefield structures in plasmas using ultrashort high-energy electrons as a probe. Sci. Rep. 6, 29485 (2016)

    ADS  Article  Google Scholar 

  15. D.J. Spence, A. Butler, S.M. Hooker, Gas-filled capillary discharge waveguides. J. Opt. Soc. Am. B 20, 138 (2003)

    ADS  Article  Google Scholar 

  16. W.P. Leemans, A.J. Gonsalves, H.-S. Mao, K. Nakamura, C. Benedetti, C.B. Schroeder, C. Tth, J. Daniels, D.E. Mittelberger, S.S. Bulanov et al., Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime. Phys. Rev. Lett. 113, 245002 (2014)

    ADS  Article  Google Scholar 

  17. A.J. Gonsalves, K. Nakamura, J. Daniels, C. Benedetti, C. Pieronek, T.C.H. De Raadt, S. Steinke, J.H. Bin, S.S. Bulanov, J. Van Tilborg, C.G.R. Geddes, C.B. Schroeder, C. Tóth, E. Esarey, K. Swanson, L. Fan-Chiang, G. Bagdasarov, N. Bobrova, V. Gasilov, G. Korn, P. Sasorov, W.P. Leemans, Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide. Phys. Rev. Lett. 122, 084801 (2019)

    ADS  Article  Google Scholar 

  18. W. Lu, M. Tzoufras, C. Joshi, F. Tsung, W. Mori, J. Vieira, R. Fonseca, L. Silva, Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime. Phys. Rev. Spec. Top. Accel. Beams 10, 061301 (2007)

    ADS  Article  Google Scholar 

  19. J.H. Sung, S.K. Lee, T.J. Yu, T.M. Jeong, J. Lee, 0.1 Hz 1.0 PW Ti: Sapphire Laser. Opt. Lett. 35, 3021 (2010)

    ADS  Article  Google Scholar 

  20. T.J. Yu, S.K. Lee, J.H. Sung, J.W. Yoon, T.M. Jeong, J. Lee, Generation of high-contrast, 30 Fs, 1.5 PW laser pulses from chirped-pulse amplification Ti: Sapphire laser. Opt. Express 20, 10807 (2012)

    ADS  Article  Google Scholar 

  21. H.T. Kim, K.H. Pae, H.J. Cha, I.J. Kim, T.J. Yu, J.H. Sung, S.K. Lee, T.M. Jeong, J. Lee, Enhancement of electron energy to the multi-gev regime by a dual-stage laser-Wakefield accelerator pumped By Petawatt laser pulses. Phys. Rev. Lett. 111, 165002 (2013)

    ADS  Article  Google Scholar 

  22. J.H. Sung, H.W. Lee, J.Y. Yoo, J.W. Yoon, C.W. Lee, J.M. Yang, Y.J. Son, Y.H. Jang, S.K. Lee, C.H. Nam, 4.2 PW, 20 Fs Ti: Sapphire laser at 0.1 Hz. Opt. Lett. 42, 2058 (2017)

    ADS  Article  Google Scholar 

  23. H.T. Kim, V.B. Pathak, K. Hong-Pae, A. Lifschitz, F. Sylla, J.H. Shin, C. Hojbota, S.K. Lee, J.H. Sung, H.W. Lee, E. Guillaume, C. Thaury, K. Nakajima, J. Vieira, L.O. Silva, V. Malka, C.H. Nam, Stable Multi-GeV electron accelerator driven by waveform-controlled PW laser pulses. Sci. Rep. 7, 10203 (2017)

    ADS  Article  Google Scholar 

  24. D. Strickland, G. Mourou, Compression of amplified chirped optical pulses. Opt. Commun. 56, 219 (1985)

    ADS  Article  Google Scholar 

  25. P. Tournois, Acousto-optic programmable dispersive filter for adaptive compensation of group delay time dispersion in laser systems. Opt. Commun. 140, 245 (1997)

    ADS  Article  Google Scholar 

  26. J. Shin, H.T. Kim, V.B. Pathak, C. Hojbota, S.K. Lee, J.H. Sung, H.W. Lee, J.W. Yoon, C. Jeon, K. Nakajima, F. Sylla, A. Lifschitz, E. Guillaume, C. Thaury, V. Malka, C.H. Nam, Quasi-monoenergetic Multi-GeV electron acceleration by optimizing the spatial and spectral phases of PW laser pulses. Plasma Phys. Control. Fusion 60, 064007 (2018)

    ADS  Article  Google Scholar 

  27. M.H. Cho, V.B. Pathak, H.T. Kim, C.H. Nam, Controlled electron injection facilitated by nanoparticles for laser wakefield acceleration. Sci. Rep. 8, 16924 (2018)

    ADS  Article  Google Scholar 

  28. C. Aniculaesei, V.B. Pathak, K.H. Oh, P.K. Singh, B.R. Lee, C.I. Hojbota, T.G. Pak, E. Brunetti, B.J. Yoo, J.H. Sung, S.K. Lee, H.T. Kim, C.H. Nam, Proof-of-principle experiment for nanoparticle-assisted laser wakefield electron acceleration. Phys. Rev. Appl. 12, 044041 (2019)

    ADS  Article  Google Scholar 

  29. V.B. Pathak, H.T. Kim, J. Vieira, L.O. Silva, C.H. Nam, All optical dual stage laser wakefield acceleration driven by two-color laser pulses. Sci. Rep. 8, 11772 (2018)

    ADS  Article  Google Scholar 

  30. B. Sanyasi-Rao, M.H. Cho, H.T. Kim, J.H. Shin, K.H. Oh, J.H. Jeon, B.J. Yoo, S.H. Cho, J.W. Yoon, J.H. Sung, S.K. Lee, C.H. Nam, Optical shaping of plasma cavity for controlled laser wakefield acceleration. Phys. Rev. Res. 2, 043319 (2020)

    Article  Google Scholar 

  31. H.W. Kim, N.A. Vinokurov, I.H. Baek, K.Y. Oang, M.H. Kim, Y.C. Kim, K.-H. Jang, K. Lee, S.H. Park, S. Park, J. Shin, J. Kim, F. Rotermund, S. Cho, T. Feurer, Y.U. Jeong, Towards jitter-free ultrafast electron diffraction technology. Nat. Photonics 14, 245 (2019)

    ADS  Article  Google Scholar 

  32. S. Steinke, J. Van Tilborg, C. Benedetti, C.G.R. Geddes, C.B. Schroeder, J. Daniels, K.K. Swanson, A.J. Gonsalves, K. Nakamura, N.H. Matlis, B.H. Shaw, E. Esarey, W.P. Leemans, Multistage coupling of independent laser-plasma accelerators. Nature 530, 190 (2016)

    ADS  Article  Google Scholar 

  33. V. Malka, A. Lifschitz, J. Faure, Y. Glinec, Staged concept of laser-plasma acceleration toward multi-GeV electron beams. Phys. Rev. Spec. Top. Accel. Beams 9, 091301 (2006)

    ADS  Article  Google Scholar 

  34. D. Kaganovich, A. Ting, D.F. Gordon, R.F. Hubbard, T.G. Jones, A. Zigler, P. Sprangle, D. Kaganovich, A. Ting, D.F. Gordon, R.F. Hubbard, T.G. Jones, A. Zigler, First demonstration of a staged all-optical laser wakefield acceleration first demonstration of a staged all-optical laser wakefield acceleration. Phys. Plasmas 12, 100702 (2005)

    ADS  Article  Google Scholar 

  35. B.B. Pollock, C.E. Clayton, J.E. Ralph, F. Albert, A. Davidson, L. Divol, C. Filip, S.H. Glenzer, K. Herpoldt, W. Lu, K.A. Marsh, J. Meinecke, W.B. Mori, A. Pak, T.C. Rensink, J.S. Ross, J. Shaw, G.R. Tynan, C. Joshi, D.H. Froula, Demonstration of a narrow energy spread, ∼0.5 GeV electron beam from a two-stage laser wakefield accelerator. Phys. Rev. Lett. 107, 045001 (2011)

    ADS  Article  Google Scholar 

  36. A. Buck, J. Wenz, J. Xu, K. Khrennikov, K. Schmid, M. Heigoldt, J.M. Mikhailova, M. Geissler, B. Shen, F. Krausz, S. Karsch, L. Veisz, Shock-front injector for high-quality laser-plasma acceleration. Phys. Rev. Lett. 110, 185006 (2013)

    ADS  Article  Google Scholar 

  37. A. Döpp, E. Guillaume, C. Thaury, A. Lifschitz, K. Ta-Phuoc, V. Malka, Energy boost in laser wakefield accelerators using sharp density transitions. Phys. Plasmas 23, 056702 (2016)

    ADS  Article  Google Scholar 

  38. C. Joshi, Laser-driven plasma accelerators operating in the self-guided, blowout regime. IEEE Trans. Plasma Sci. 45, 3134 (2017)

    ADS  Article  Google Scholar 

  39. S.P.D. Mangles, G. Genoud, S. Kneip, M. Burza, K. Cassou, B. Cros, N.P. Dover, C. Kamperidis, Z. Najmudin, A. Persson, J. Schreiber, F. Wojda, C.-G. Wahlström, Controlling the spectrum of X-rays generated in a laser-plasma accelerator by tailoring the laser wavefront. Appl. Phys. Lett. 95, 181106 (2009)

    ADS  Article  Google Scholar 

  40. Y. Glinec, J. Faure, A. Lifschitz, J.M. Vieira, R.A. Fonseca, L.O. Silva, V. Malka, Direct observation of betatron oscillations in a laser-plasma electron accelerator. EPL Europhys. Lett. 81, 64001 (2008)

    ADS  Article  Google Scholar 

  41. A. Popp, J. Vieira, J. Osterhoff, Z. Major, R. Hörlein, M. Fuchs, R. Weingartner, T.P. Rowlands-Rees, M. Marti, R.A. Fonseca, S.F. Martins, L.O. Silva, S.M. Hooker, F. Krausz, F. Grüner, S. Karsch, All-optical steering of laser-Wakefield-Accelerated Electron Beams. Phys. Rev. Lett. 105, 215001 (2010)

    ADS  Article  Google Scholar 

  42. C. Thaury, E. Guillaume, S. Corde, R. Lehe, M. Le Bouteiller, K.T. Phuoc, X. Davoine, J.M. Rax, A. Rousse, V. Malka, Angular-momentum evolution in laser-plasma accelerators. Phys. Rev. Lett. 111, 135002 (2013)

    ADS  Article  Google Scholar 

  43. A. Döpp, B. Mahieu, A. Lifschitz, C. Thaury, A. Doche, E. Guillaume, G. Grittani, O. Lundh, M. Hansson, J. Gautier, M. Kozlova, J.P. Goddet, P. Rousseau, A. Tafzi, V. Malka, A. Rousse, S. Corde, K.T. Phuoc, Stable femtosecond X-rays with tunable polarization from a laser-driven accelerator. Light Sci. Appl. 6, e17086 (2017)

    Article  Google Scholar 

  44. B.S. Rao, J.H. Jeon, H.T. Kim, C.H. Nam, Bright muon source driven by GeV electron beams from a compact laser wakefield accelerator. Plasma Phys. Control. Fusion 60, 095002 (2018)

    ADS  Article  Google Scholar 

  45. C.I. Hojbota, H.T. Kim, C.M. Kim, V.B. Pathak, C.H. Nam, Effect of the temporal laser pulse asymmetry on pair production processes during intense laser-electron scattering. Plasma Phys. Control. Fusion 60, 064004 (2018)

    ADS  Article  Google Scholar 

  46. C.I. Hojbota, H.T. Kim, V.B. Pathak, C.H. Nam, Influence of polarization on back-reflected E−e+ pair jets from laser-electron collision. Plasma Phys. Control. Fusion 62, 024003 (2019)

    ADS  Article  Google Scholar 

  47. A.I. Titov, B. Kämpfer, H. Takabe, Dimuon production by laser-wakefield accelerated electrons. Phys. Rev. Spec. Top. Accel. Beams 12, 111301 (2009)

    ADS  Article  Google Scholar 

  48. D. Stratakis, High-Intensity Muon Sources for High Energy Physics Experiments. Proc. Sci. 226, 083 (2015)

    Google Scholar 

  49. K. Nagamine, Radiography with cosmic-ray and compact accelerator muons; exploring inner-structure of large-scale objects and landforms. Proc. Jpn. Acad. Ser. B. Phys. Biol. Sci. 92, 265 (2016)

    Article  Google Scholar 

  50. W. Dreesen, J. A. Green, M. Browder, J. Wood, D. Schwellenbach, T. Ditmire, G. Tiwari, C. Wagner, in Detection of Petawatt laser-induced muon source for rapid High-Z material detection, 2014 IEEE Nucl. Sci. Symp. Med. Imaging Conf. NSS/MIC 2014 (2016)

  51. K. Ishida, Muon applications at the RIKEN-RAL muon facility. AIP Conf. Proc. 981, 378 (2008)

    ADS  Article  Google Scholar 

  52. W.A. Barletta, A.M. Sessler, Characteristics of a high energy μ + μ-collider based on electro-production of muons. Nucl. Instr. Methods Phys. Res. A 350, 36 (1994)

    ADS  Article  Google Scholar 

  53. Y.-S. Tsai, Pair production and bremsstrahlung of charged leptons. Rev. Mod. Phys. 46, 815 (1974)

    ADS  Article  Google Scholar 

  54. C. Bamber, S.J. Boege, T. Koffas, T. Kotseroglou, A.C. Melissinos, D.D. Meyerhofer, D.A. Reis, W. Ragg, C. Bula, K.T. McDonald, E.J. Prebys, D.L. Burke, R.C. Field, G. Horton-Smith, J.E. Spencer, D. Walz, S.C. Berridge, W.M. Bugg, K. Shmakov, A.W. Weidemann, Studies of nonlinear QED in collisions of 466 GeV electrons with intense laser pulses. Phys. Rev. D 60, 092004 (1999)

    ADS  Article  Google Scholar 

  55. M. Vranic, O. Klimo, G. Korn, S. Weber, Multi-GeV electron-positron beam generation from laser-electron scattering. Sci. Rep. 8, 4702 (2018)

    ADS  Article  Google Scholar 

  56. T.G. Blackburn, C.P. Ridgers, J.G. Kirk, A.R. Bell, Quantum radiation reaction in laser–electron-beam collisions. Phys. Rev. Lett. 112, 015001 (2014)

    ADS  Article  Google Scholar 

  57. T.G. Blackburn, A. Ilderton, C.D. Murphy, M. Marklund, Scaling laws for positron production in laser–electron-beam collisions. Phys. Rev. A 96, 022128 (2017)

    ADS  Article  Google Scholar 

  58. M. Lobet, X. Davoine, E. Humières, L. Gremillet, Generation of high-energy electron-positron pairs in the collision of a laser-accelerated electron beam with a multipetawatt laser. Phys. Rev. Accel. Beams 20, 043401 (2017)

    ADS  Article  Google Scholar 

  59. X.S. Geng, L.L. Ji, B.F. Shen, B. Feng, Z. Guo, Q. Yu, L.G. Zhang, Z.Z. Xu, Quantum reflection above the classical radiation-reaction barrier in the quantum electro-dynamics regime. Commun. Phys. 2, 66 (2019)

    Article  Google Scholar 

  60. Z. Gong, R.H. Hu, J.Q. Yu, Y.R. Shou, A.V. Arefiev, X.Q. Yan, Radiation rebound and quantum splash in electron-laser collisions. Phys. Rev. Accel. Beams 22, 093401 (2019)

    ADS  Article  Google Scholar 

  61. B. King, H. Ruhl, Trident pair production in a constant crossed field. Phys. Rev. D 88, 013005 (2013)

    ADS  Article  Google Scholar 

  62. G. Torgrimsson, Nonlinear trident in the high-energy limit: nonlocality, coulomb field, and resummations. Phys. Rev. D 102, 096008 (2020)

    ADS  MathSciNet  Article  Google Scholar 

  63. A. Gonoskov, S. Bastrakov, E. Efimenko, A. Ilderton, M. Marklund, I. Meyerov, A. Muraviev, A. Sergeev, I. Surmin, E. Wallin, Extended particle-in-cell schemes for physics in ultrastrong laser fields: review and developments. Phys. Rev. E 92, 023305 (2015)

    ADS  Article  Google Scholar 

  64. H. Abramowicz, U. Acosta, M. Altarelli, R. Aßmann, Z. Bai, T. Behnke, Y. Benhammou, T. Blackburn, S. Boogert, O. Borysov, M. Borysova, R. Brinkmann, M. Bruschi, F. Burkart, K. Büßer, N. Cavanagh, O. Davidi, W. Decking, U. Dosselli, N. Elkina, A. Fedotov, M. Firlej, T. Fiutowski, K. Fleck, M. Gostkin, C. Grojean, B. Kämpfer, B. King, H. Lahno, A. Levanon, A. Levy, I. Levy, J. List, W. Lohmann, T. Ma, A. Macleod, V. Malka, F. Meloni, A. Mironov, M. Morandin, J. Moron, E. Negodin, G. Perez, I. Pomerantz, R. Prasad, F. Quéré, A. Ringwald, C. Rödel, S. Rykovanov, F. Salgado, A. Santra, G. Sarri, A. Sävert, A. Sbrizzi, S. Schmitt, U. Schramm, S. Schuwalow, D. Seipt, L. Shaimerdenova, M. Shchedrolosiev, M. Skakunov, Y. Soreq, M. Streeter, K. Swientek, N. Tal-Hod, S. Tang, T. Teter, D. Thoden, A. Titov, O. Tolbanov, G. Torgrimsson, A. Tyazhev, M. Wing, M. Zanetti, A. Zarubin, K. Zeil, M. Zepf, A. Zhemchukov, Conceptual design report for the LUXE experiment. Eur. Phys. J. Spec. Top. 230, 2445 (2021)

    Article  Google Scholar 

  65. S. Meuren, P. H. Bucksbaum, N. J. Fisch, F. Fiúza, S. Glenzer, M. J. Hogan, K. Qu, D. A. Reis, G. White, V. Yakimenko, in On Seminal HEDP research opportunities enabled by colocating multi-petawatt laser with high-density electron beams. 2002.10051 (2020)

  66. C. Keitel, A. Di Piazza, G. Paulus, T. Stoehlker, E. Clark, S. Mangles, Z. Najmudin, K. Krushelnick, J. Schreiber, M. Borghesi, B. Dromey, M. Geissler, D. Riley, G. Sarri, M. Zepf, in Photo-induced pair production and strong field QED on Gemini. 2103.06059 (2021)

  67. K.A. Tanaka, K.M. Spohr, D.L. Balabanski, S. Balascuta, L. Capponi, M.O. Cernaianu, M. Cuciuc, A. Cucoanes, I. Dancus, A. Dhal, B. Diaconescu, D. Doria, P. Ghenuche, D.G. Ghita, S. Kisyov, V. Nastasa, J.F. Ong, F. Rotaru, D. Sangwan, P.-A. Söderström, D. Stutman, G. Suliman, O. Tesileanu, L. Tudor, N. Tsoneva, C.A. Ur, D. Ursescu, N.V. Zamfir, Current status and highlights of the ELI-NP research program. Matter Radiat. Extrem. 5, 024402 (2020)

    Article  Google Scholar 

  68. A. Di Piazza, C. Müller, K.Z. Hatsagortsyan, C.H. Keitel, Extremely high-intensity laser interactions with fundamental quantum systems. Rev. Mod. Phys. 84, 1177 (2012)

    ADS  Article  Google Scholar 

Download references

Funding

This research was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (Ministry of Science and ICT (MSIT)) Grant No. NRF-2020R1F1A1070538, the GIST Research Institute (GRI) grant funded by the Gwangju Institute of Science and Technology (GIST) in 2021, Ultrashort Quantum Beam Facility (UQBF) operation program (140011) through APRI-GIST, and the Institute for Basic Science, Korea (IBS-R001-D1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyung Taek Kim.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest/competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, H.T., Pathak, V.B., Hojbota, C.I. et al. Laser wakefield electron acceleration with PW lasers and future applications. J. Korean Phys. Soc. 80, 670–683 (2022). https://doi.org/10.1007/s40042-022-00443-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-022-00443-9

Keywords

  • Laser wakefield acceleration
  • Laser–plasma interactions
  • Intense laser pulse
  • PW lasers