Skip to main content
Log in

Low-temperature processed nickel oxide hole-transporting layer for perovskite solar cell

  • Original Paper - Condensed Matter
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

In this study, we demonstrated low-temperature sol–gel processed nickel oxide (NiO) film as the hole transporting layer (HTL) of the CH3NH3PbI3 (MAPbI3) perovskite solar cells. The NiO film, which was solution-processed and annealed at a temperature of 300 °C showed rms surface roughness of 2.86 nm, optical transmittance of ~ 82 to 87% in the visible wavelength, and the band gap energy of 3.82 eV. The perovskite coated on the NiO showed a good surface coverage with negligible pinholes, a typical grain size of 100–300 nm, photoluminescence peak of 767 nm, and the Urbach energy of 60 meV. The perovskite solar cells fabricated with NiO HTL produced the power conversation efficiency (PCE) of 8.13%, short circuit current density (Jsc) of 14.78 mA/cm2, open circuit voltage (Voc) of 1.05 V, and filling factor (FF) of 52.4%. This indicates that, although the device performance should be further developed by optimizing the NiO, the low-temperature processed NiO has a substantial potential as the HTL of the perovskite solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009)

    Article  Google Scholar 

  2. N.J. Jeon, H. Na, E.H. Jung, T.-Y. Yang, Y.G. Lee, G. Kim, H.-W. Shin, S.I. Seok, J. Lee, J. Seo, Nat. Energy 3, 682 (2018)

    Article  ADS  Google Scholar 

  3. J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Grätzel, Nature 499, 316 (2013)

    Article  ADS  Google Scholar 

  4. Y. Chen, M. He, J. Peng, Y. Sun, Z. Liang, Adv. Sci. 3, 1500392 (2016)

    Article  Google Scholar 

  5. M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Science 338, 643 (2012)

    Article  ADS  Google Scholar 

  6. M.A. Green, A. Ho-Baillie, H.J. Snaith, Nat. Photon. 8, 506 (2014)

    Article  ADS  Google Scholar 

  7. G. Xing, N. Mathews, S. Sun, S.S. Lim, Y.M. Lam, M. Grätzel, S. Mhaisalkar, T.C. Sum, Science 342, 344 (2013)

    Article  ADS  Google Scholar 

  8. W. Zhu, C. Bao, Y. Wang, F. Li, X. Zhou, J. Yang, B. Lv, X. Wang, T. Yu, Z. Zou, Dalton Trans. 45, 7856 (2016)

    Article  Google Scholar 

  9. H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J.E. Moser, M. Grätzel, N.-G. Park, Sci. Rep. 2, 591 (2012)

    Article  Google Scholar 

  10. J.-Y. Jeng, K.-C. Chen, T.-Y. Chiang, P.-Y. Lin, T.-D. Tsai, Y.-C. Chang, T.-F. Guo, P. Chen, T.-C. Wen, Y.-J. Hsu, Adv. Mater. 26, 4107 (2014)

    Article  Google Scholar 

  11. C. He, F. Zhang, X. Zhao, C. Lin, M. Ye, Front. Phys. 6, 99 (2018)

    Article  Google Scholar 

  12. Z. Zhu, Y. Bai, T. Zhang, Z. Liu, X. Long, Z. Wei, Z. Wang, L. Zhang, J. Wang, F. Yan, S. Yang, Angew. Chem. 126, 12779 (2014)

    Article  ADS  Google Scholar 

  13. J. Zheng, L. Hu, J.S. Yun, M. Zhang, C.F.J. Lau, J. Bing, X. Deng, Q. Ma, Y. Cho, W. Fu, C. Chen, M.A. Green, S. Huang, A.W.Y. Ho-Baillie, A.C.S. Appl, Energy Mater. 1, 561 (2018)

    Google Scholar 

  14. Z. Hu, D. Chen, P. Yang, L. Yang, L. Qin, Y. Huang, X. Zhao, Appl. Surf. Sci. 441, 258 (2018)

    Article  ADS  Google Scholar 

  15. J.H. Kim, P.-W. Liang, S.T. Williams, N. Cho, C.-C. Chueh, M.S. Glaz, D.S. Ginger, A.K.-Y. Jen, Adv. Mater. 27, 695 (2014)

    Article  Google Scholar 

  16. J.W. Jung, C.-C. Chueh, A.K.-Y. Jen, Adv. Mater. 27, 7874 (2015)

    Article  Google Scholar 

  17. Y. Kawamura, H. Mashiyama, K. Hasebe, Jpn. J. Phys. Soc. 71, 1694 (2002)

    Article  ADS  Google Scholar 

  18. T.H. Keil, Phys. Rev. 144, 582 (1966)

    Article  ADS  Google Scholar 

  19. F. Urbach, Phys. Rev. 92, 1324 (1953)

    Article  ADS  Google Scholar 

  20. D.W. Wolf, J. Holovsky, S.-J. Moon, P. Löper, B. Niesen, M. Ledinsky, F.-J. Haug, J.-H. Yum, C. Ballif, J. Phys. Chem. Lett. 5, 1035 (2014)

    Article  Google Scholar 

  21. S. Knief, W. von Niessen, Phys. Rev. B 59, 12940 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by “Research Base Construction Fund Support Program” funded by Jeonbuk National University in 2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyunsoo Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Parida, B., Oh, M. et al. Low-temperature processed nickel oxide hole-transporting layer for perovskite solar cell. J. Korean Phys. Soc. 80, 981–985 (2022). https://doi.org/10.1007/s40042-022-00435-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-022-00435-9

Keywords

Navigation