Skip to main content

Overview of recent progress in 3D field physics in KSTAR

Abstract

Various 3D field physics challenges of magnetically confined plasmas arise when the driving source comes from either externally applied non-axisymmetric 3D magnetic perturbations or plasma instabilities inside the plasma. Recently, several key outstanding topics of 3D field physics have been extensively studied in the Korean Superconducting Tokamak Advanced Research (KSTAR), such as edge-localized-mode (ELM) control by resonant magnetic perturbation (RMP), error field (EF) control, 3D field effects on rotation and transport, and RMP-induced alteration of divertor heat flux and detachment. KSTAR has a few physically unique features (i.e., high rotation and long-pulse plasmas with a low intrinsic EF) and machine/diagnostic capabilities (i.e., 3-row in-vessel control coil and state-of-the-art 2D/3D imaging diagnostics), which have been taken advantage of until now to address critical 3D field physics issues relevant to ITER and K-DEMO. Among many remarkable achievements are the robust access to and control of n = 1 RMP ELM suppression, along with a development of its physics basis tools, parameter expansion, optimization, and long-pulse control techniques. Nonetheless, a series of unresolved 3D physics themes, as well as limited coverage of 3D field operating regimes, have also been identified as future works for the 3D field research in KSTAR. In this paper, we provide an overview about the recent progress of KSTAR 3D field physics and present future plans of KSTAR 3D research toward a future fusion reactor.

This is a preview of subscription content, access via your institution.

Fig. 1

reproduced from Ref. [17]). b Representative examples of the different n = 1 coil phasings that can be applied by the IVCC system in KSTAR. ϕ denotes the toroidal angle, each rectangle corresponds to one specific RMP coil with two turns, and each row represents the top/middle/bottom array of the RMP coils. The plus ( +) and minus ( −) signs indicate that the directions of the magnetic field generated by the coil currents are radially outward and inward, respectively

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

reproduced from Ref. [57]

Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

reproduced from Ref. [96]

Fig. 23
Fig. 24
Fig. 25
Fig. 26

reproduced from Ref. [32]

Fig. 27

reproduced from Ref. [112]

Fig. 28
Fig. 29
Fig. 30
Fig. 31

References

  1. K. Ikeda, Nucl. Fusion 47, S1 (2007)

    Article  Google Scholar 

  2. K. Kim et al., Fusion Eng. Des. 88, 488 (2013)

    Article  Google Scholar 

  3. B.V. Chirikov, Phys. Rep. 52, 265 (1979)

    ADS  Article  Google Scholar 

  4. A.J. Lichtenberg and M.A. Lieberman, Regular and chaotic dynamics, 2nd edn. (Springer-Verlag, New York, 1992), pp. 1–692

    MATH  Book  Google Scholar 

  5. F.L. Waelbroeck, Nucl. Fusion 49, 104025 (2009)

    ADS  Article  Google Scholar 

  6. J.D. Callen, Nucl. Fusion 51, 094026 (2011)

    ADS  Article  Google Scholar 

  7. J.-K. Park, M.J. Schaffer, J.E. Menard, and A.H. Boozer, Phys. Rev. Lett. 99, 195003 (2007)

    ADS  Article  Google Scholar 

  8. T.E. Evans et al., Nat. Phys. 2, 419 (2006)

    Article  Google Scholar 

  9. T.E. Evans, Plasma Phys. Control. Fusion 57, 123001 (2015)

    ADS  Article  Google Scholar 

  10. T.E. Evans et al., Phys. Rev. Lett. 92, 235003 (2004)

    ADS  Article  Google Scholar 

  11. Y.M. Jeon et al., Phys. Rev. Lett. 109, 035004 (2012)

    ADS  Article  Google Scholar 

  12. Y. Sun et al., Phys. Rev. Lett. 117, 115001 (2016)

    ADS  Article  Google Scholar 

  13. W. Suttrop et al., Plasma Phys. Control. Fusion 59, 014049 (2017)

    ADS  Article  Google Scholar 

  14. H. Zhom, Plasma Phys. Control. Fusion 38, 105 (1996)

    ADS  Article  Google Scholar 

  15. P.B. Snyder et al., Phys. Plasmas 9, 2037 (2002)

    ADS  Article  Google Scholar 

  16. A. Loarte et al., Nucl. Fusion 54, 033007 (2014)

    ADS  Article  Google Scholar 

  17. J.-K. Park et al., Nat. Phys. 14, 1223 (2018)

    Article  Google Scholar 

  18. A.B. Rechester and M.N. Rosenbluth, Phys. Rev. Lett. 40, 38 (1978)

    ADS  Article  Google Scholar 

  19. L. Cui et al., Nucl. Fusion 57, 116030 (2017)

    ADS  Article  Google Scholar 

  20. O. Schmitz et al., Nucl. Fusion 56, 106011 (2016)

    ADS  Article  Google Scholar 

  21. H. Frerichs et al., Phys. Rev. Lett. 125, 155001 (2020)

    ADS  Article  Google Scholar 

  22. G.S. Lee et al., Nucl. Fusion 40, 575 (2000)

    ADS  Article  Google Scholar 

  23. Y.K. Oh et al., Fusion Eng. Des. 84, 344 (2009)

    Article  Google Scholar 

  24. Y.K. Oh et al., J. Korean Phys. Soc. 73, 712 (2018)

    ADS  Article  Google Scholar 

  25. H.K. Park et al., Nucl. Fusion 59, 112020 (2019)

    ADS  Article  Google Scholar 

  26. J. Kim et al., Nucl. Fusion 57, 022001 (2017)

    ADS  Article  Google Scholar 

  27. Y. In et al., Nucl. Fusion 57, 116054 (2017)

    ADS  Article  Google Scholar 

  28. F. Laggner et al., Nucl. Fusion 60, 076004 (2020)

    ADS  Article  Google Scholar 

  29. G.W. Shin, J.-W. Juhn, G.I. Kwon, S.-H. Hahn, Fusion Eng. Des. 157, 111634 (2020)

    Article  Google Scholar 

  30. Y. In et al., Nucl. Fusion 59, 126045 (2019)

    ADS  Article  Google Scholar 

  31. S.M. Yang et al., Nucl. Fusion 60, 096023 (2020)

    ADS  Article  Google Scholar 

  32. M.J. Choi et al., Nucl. Fusion 57, 126058 (2017)

    ADS  Article  Google Scholar 

  33. J.-M. Kwon et al., Phys. Plasmas 25, 052506 (2018)

    ADS  Article  Google Scholar 

  34. M. Kim et al., Phys. Plasmas 27, 112501 (2020)

    ADS  Article  Google Scholar 

  35. O. Sauter, C. Angioni, and Y.R. Lin-Liu, Phys. Plasmas 6, 2834 (1999)

    ADS  Article  Google Scholar 

  36. F. Troyon, R. Gruber, H. Saurenmann, S. Semenzato, S. Succi, Plasma Phys. Control. Fusion 26, 209 (1984)

    ADS  Article  Google Scholar 

  37. G. Park, C.S. Chang, I. Joseph, and R.A. Moyer, Phys. Plasmas 17, 102503 (2010)

    ADS  Article  Google Scholar 

  38. P.B. Snyder et al., Phys. Plasmas 19, 056115 (2012)

    ADS  Article  Google Scholar 

  39. Q.M. Hu et al., Nucl. Fusion 60, 076001 (2020)

    ADS  Article  Google Scholar 

  40. M. J. Choi et al., https://arxiv.org/pdf/2102.10733.pdf (2021).

  41. J.H. Lee, S.T. Oh, and H.M. Wi, Rev. Sci. Instrum. 81, 10D528 (2010)

    Article  Google Scholar 

  42. W.-H. Ko, H.H. Lee, D. Seo, and M. Kwon, Rev. Sci. Instrum. 81, 10D740 (2010)

    Article  Google Scholar 

  43. W. Suttrop et al., Phys. Rev. Lett. 106, 225004 (2011)

    ADS  Article  Google Scholar 

  44. T. Petrie et al., Nucl. Fusion 51, 073003 (2011)

    ADS  Article  Google Scholar 

  45. C. Paz-Soldan et al., Nucl. Fusion 59, 056012 (2019)

    ADS  Article  Google Scholar 

  46. Q.M. Hu et al., Phys. Plasmas 26, 120702 (2019)

    ADS  Article  Google Scholar 

  47. R.A. Moyer et al., Phys. Plasmas 24, 102501 (2017)

    ADS  Article  Google Scholar 

  48. W. Suttrop et al., Nucl. Fusion 58, 096031 (2018)

    ADS  Article  Google Scholar 

  49. J.S. Kang et al., Nucl. Fusion 57, 126034 (2017)

    ADS  Article  Google Scholar 

  50. Y. M. Jeon et al., in 27th IAEA Fusion Energy Conference (Gandhinagar, India, Oct. 2018).

  51. R. Nazikian et al., in 26th IAEA Fusion Energy Conference (Kyoto, Japan, Oct. 2016).

  52. S.-H. Hahn et al., Nucl. Fusion 61, 126026 (2021)

    ADS  Article  Google Scholar 

  53. Y. In et al., to be published (2021).

  54. Y. In et al., in 28th IAEA Fusion Energy Conference (Virtual Event, May 2021).

  55. A. Kirk et al., Nucl. Fusion 55, 043011 (2015)

    ADS  Article  Google Scholar 

  56. J. Lee et al., Phys. Rev. Lett. 117, 075001 (2016)

    ADS  Article  Google Scholar 

  57. J. Lee et al., Nucl. Fusion 59, 066033 (2019)

    ADS  Article  Google Scholar 

  58. K.H. Burrell et al., Plasma Phys. Control. Fusion 44, A253 (2002)

    Article  Google Scholar 

  59. X. Chen et al., Nucl. Fusion 57, 086008 (2017)

    ADS  Article  Google Scholar 

  60. J.-K. Park, A.H. Boozer, and A.H. Glasser, Phys. Plasmas 14, 052110 (2007)

    ADS  Article  Google Scholar 

  61. S. M. Yang et al., to be submitted (2021).

  62. R. Fitzpatrick, Phys. Fluids B 3, 644 (1991)

    ADS  Article  Google Scholar 

  63. R. Fitzpatrick, Phys. Plasmas 25, 042503 (2018)

    ADS  Article  Google Scholar 

  64. Q.M. Hu et al., Phys. Plasmas 28, 052505 (2021)

    ADS  Article  Google Scholar 

  65. J.-K. Park, A.H. Boozer, and J.E. Menard, Phys. Rev. Lett. 102, 065002 (2009)

    ADS  Article  Google Scholar 

  66. G.J. Choi and T.S. Hahm, Nucl. Fusion 58, 026001 (2018)

    ADS  Article  Google Scholar 

  67. J.-K. Park and N.C. Logan, Phys. Plasmas 24, 032505 (2017)

    ADS  Article  Google Scholar 

  68. Q. Yu, S. Günter, and B.D. Scott, Phys. Plasmas 10, 797 (2003)

    ADS  Article  Google Scholar 

  69. Q. Yu and S. Günter, Nucl. Fusion 51, 073030 (2011)

    ADS  Article  Google Scholar 

  70. Q.M. Hu et al., Phys. Rev. Lett. 125, 045001 (2020)

    ADS  Article  Google Scholar 

  71. Y. In et al., Nucl. Fusion 59, 056009 (2019)

    ADS  Article  Google Scholar 

  72. G.T.A. Huysmans, S. Pamela, E. van der Plas, and P. Ramet, Plasma Phys. Control. Fusion 51, 124012 (2009)

    ADS  Article  Google Scholar 

  73. M. Hoelzl et al., Nucl. Fusion 61, 065001 (2021)

    ADS  Article  Google Scholar 

  74. F. Orain et al., Phys. Plasmas 20, 102510 (2013)

    ADS  Article  Google Scholar 

  75. F. Orain et al., Phys. Plasmas 26, 042503 (2019)

    ADS  Article  Google Scholar 

  76. S.K. Kim et al., Nucl. Fusion 60, 026009 (2020)

    ADS  Article  Google Scholar 

  77. M. Becoulet et al., Phys. Rev. Lett. 113, 115001 (2014)

    ADS  Article  Google Scholar 

  78. J. Kim, S.S. Kim and H. Jhang, Nucl. Fusion 59, 096019 (2019)

    ADS  Article  Google Scholar 

  79. A.H. Boozer, Phys. Rev. Lett. 86, 5059 (2001)

    ADS  Article  Google Scholar 

  80. J.T. Scoville et al., Nucl. Fusion 31, 875 (1991)

    Article  Google Scholar 

  81. Y. In, J.-K. Park, Y.M. Jeon, J. Kim and M. Okabayashi, Nucl. Fusion 55, 043004 (2015)

    ADS  Article  Google Scholar 

  82. S.M. Yang et al., Nucl. Fusion 61, 086009 (2021)

    ADS  Article  Google Scholar 

  83. M.J. Lanctot et al., Phys. Plasmas 24, 056117 (2017)

    ADS  Article  Google Scholar 

  84. K.C. Shaing, Phys. Fluids 26, 3315 (1986)

    ADS  Article  Google Scholar 

  85. J.-K. Park et al., Phys. Rev. Lett. 126, 125001 (2021)

    ADS  Article  Google Scholar 

  86. C. Nührenberg and R. Zille, Phys. Lett. 129A, 113 (1988)

    ADS  Article  Google Scholar 

  87. A.H. Boozer, Plasma Phys. Control. Fusion 37, A103 (1995)

    ADS  Article  Google Scholar 

  88. K. Kim et al., Nucl. Fusion 57, 036014 (2017)

    ADS  Article  Google Scholar 

  89. K. Kim et al., Nucl. Fusion 57, 126035 (2017)

    ADS  Article  Google Scholar 

  90. A. Bortolon et al., Phys. Rev. Lett. 110, 265008 (2013)

    ADS  Article  Google Scholar 

  91. M. Garcia-Munoz et al., Plasma Phys. Control. Fusion 61, 054007 (2019)

    ADS  Article  Google Scholar 

  92. K. Kim, H. Jhang, J. Kim, and T. Rhee, Phys. Plasmas 25, 122511 (2018)

    ADS  Article  Google Scholar 

  93. K. Kim, J.S. Kang, H.S. Kim and J. Kim, Nucl. Fusion 60, 126012 (2020)

    ADS  Article  Google Scholar 

  94. K.C. Shaing, Phys. Plasmas 10, 1443 (2003)

    ADS  Article  Google Scholar 

  95. A.M. Garofalo et al., Phys. Rev. Lett. 101, 195005 (2008)

    ADS  Article  Google Scholar 

  96. S.M. Yang et al., Phys. Rev. Lett. 123, 095001 (2019)

    ADS  Article  Google Scholar 

  97. Y. Liu, M.S. Chu, I.T. Chapman, and T.C. Hender, Phys. Plasmas 15, 112503 (2008)

    ADS  Article  Google Scholar 

  98. Z.R. Wang, M.J. Lanctot, Y.Q. Liu, J.-K. Park, and J.E. Menard, Phys. Rev. Lett. 114, 145005 (2015)

    ADS  Article  Google Scholar 

  99. J. Kim et al., Rev. Sci. Instrum. 83, 10D305 (2012)

    Article  Google Scholar 

  100. M. Garcia-Munoz et al., Plasma Phys. Control. Fusion 55, 124014 (2013)

    ADS  Article  Google Scholar 

  101. M.A. Van Zeeland et al., Nucl. Fusion 55, 073028 (2015)

    ADS  Article  Google Scholar 

  102. K.G. McClements et al., Plasma Phys. Control. Fusion 60, 095005 (2018)

    ADS  Article  Google Scholar 

  103. Z. Jin et al., Fusion Eng. Des. 125, 160 (2017)

    Article  Google Scholar 

  104. J. Kim et al., in 15th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement System (Princeton, USA, Sept. 2017).

  105. J.Y. Kim et al., AIP Adv. 6, 105013 (2016)

    ADS  Article  Google Scholar 

  106. T. Rhee et al., Phys. Plasmas 26, 112504 (2019)

    ADS  Article  Google Scholar 

  107. H.P. Furth, J. Killeen, and M.N. Rosenbluth, Phys. Fluids 6, 459 (1963)

    ADS  Article  Google Scholar 

  108. R. Fitzpatrick, Phys. Plasmas 2, 825 (1995)

    ADS  Article  Google Scholar 

  109. K. Ida et al., Phys. Plasmas 11, 2551 (2004)

    ADS  Article  Google Scholar 

  110. E. Joffrin et al., Nucl. Fusion 43, 1167 (2003)

    ADS  Article  Google Scholar 

  111. M.J. Choi, Rev. Mod. Plasma Phys. 5, 9 (2021)

    ADS  Article  Google Scholar 

  112. M.J. Choi et al., Nat. Commun. 12, 375 (2021)

    ADS  Article  Google Scholar 

  113. G.S. Yun et al., Rev. Sci. Instrum. 85, 11D820 (2014)

    Article  Google Scholar 

  114. T.S. Hahm and P.H. Diamond, J. Korean Phys. Soc. 73, 747 (2018)

    ADS  Article  Google Scholar 

  115. M.J. Choi et al., Nucl. Fusion 56, 066013 (2016)

    ADS  Article  Google Scholar 

  116. S. K. Kim, Private communications (2021).

  117. ITER Technical Report No. ITR-20–008, 22 September 2020.

  118. G. Mckee et al., Nucl. Fusion 53, 113011 (2013)

    ADS  Article  Google Scholar 

  119. N.C. Logan, C. Zhu, J.-K. Park, S.M. Yang and Q. Hu, Nucl. Fusion 61, 076010 (2021)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the hard work of the entire KSTAR team to support 3D field research in KSTAR. This work was supported by Korean Ministry of Science and ICT under KFE R&D Programs of “KSTAR Experimental Collaboration and Fusion Plasma Research (KFE-EN2201-13)” and “High Performance Fusion Simulation R&D (KFE-EN2241-8)” through the Korea Institute of Fusion Energy (KFE). This work was also supported by the National Research Foundation (NRF) of Korea under Grant Nos. NRF-2019M1A7A1A03088443 and NRF-2019R1F1A1057545, and by the KOREA HYDRO & NUCLEAR POWER CO., LTD (No. 2019-Tech-G19IO16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunyoung Park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Park, G., In, Y., Park, JK. et al. Overview of recent progress in 3D field physics in KSTAR. J. Korean Phys. Soc. 80, 759–786 (2022). https://doi.org/10.1007/s40042-022-00423-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-022-00423-z

Keywords

  • KSTAR
  • Plasma
  • Fusion
  • 3D field physics
  • Edge-localized-modes (ELMs)
  • Resonant magnetic perturbation (RMP)