Skip to main content
Log in

Arbitrary-amplitude self-gravitational solitary potential in a degenerate quantum plasma system

  • Original Paper - Fluids, Plasma and Phenomenology
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The basic features of a solitary potential (associated with the self-gravitational field), which are found to exist in a degenerate quantum plasma system (containing heavy nuclei and degenerate electrons), have been investigated by employing the pseudo-potential approach, which is valid for nonlinear structures with arbitrary amplitudes. The small-amplitude limit for such nonlinear structures has also been recovered. The degenerate quantum plasma system under consideration is found to support solitary structures with a negative self-gravitational potential; moreover, the magnitude of the amplitude of the self-gravitational solitary potential structures first increases and then decreases with increasing propagation speed whereas the width of the self-gravitational solitary potential structures increases with increasing speed. The implications of our results in some astrophysical compact objects (such as white dwarfs and neutron stars) are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Chandrasekhar, Philos. Mag. 11, 592 (1931)

    Article  Google Scholar 

  2. S. Chandrasekhar, Astrophys. J. 74, 81 (1931)

    Article  ADS  Google Scholar 

  3. S. Chandrasekhar, Mon. Not. R. Astron. Soc. 170, 405 (1935)

    Google Scholar 

  4. S. Chandrasekhar, An Introduction to the Study of Stellar Structure (Dover, New York, 1939), p. 412

    MATH  Google Scholar 

  5. S. Chandrasekhar, Phys. Rev. Lett. 12, 114 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  6. S. Chandrasekhar, R.F. Tooper, Astrophys. J. 139, 1396 (1964)

    Article  ADS  Google Scholar 

  7. D. Koester, G. Chanmugam, Rep. Prog. Phys. 53, 837 (1990)

    Article  ADS  Google Scholar 

  8. S.L. Shapiro, S.A. Teukolsky, Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects (Wiley, New York, 1983)

    Book  Google Scholar 

  9. E. Garcia-Berro, S. Torres, L.G. Althaus, I. Renedo, P. Lorén-Aguiltar, A.H. Córsico, R.D. Rohrmann, M. Salaris, J. Isern, Nature (London) 465, 194 (2010)

    Article  ADS  Google Scholar 

  10. F. Haas, Phys. Plasmas 14, 042309 (2007)

    Article  ADS  Google Scholar 

  11. A.P. Misra, S. Samanta, Phys. Plasmas 15, 122307 (2008)

    Article  ADS  Google Scholar 

  12. A.P. Misra, S. Banerjee, F. Haas, P.K. Shukla, L.P.G. Assis, Phys. Plasmas 17, 032307 (2010)

    Article  ADS  Google Scholar 

  13. S.K. Chakrabarti, Astron. Astrphys. 351, 185–191 (1999)

    ADS  Google Scholar 

  14. M.A. Hossen, A.A. Mamun, Phys. Plasmas 22, 102710 (2015)

    Article  ADS  Google Scholar 

  15. M.R. Hossen, A.A. Mamun, Braz. J. Phys. 44, 673–681 (2014)

    Article  ADS  Google Scholar 

  16. M.R. Hossen, L. Nahar, S. Sultana, A.A. Mamun, High Energy Density Phys. 13, 13–19 (2014)

    Article  ADS  Google Scholar 

  17. A.A. Mamun, P.K. Shukla, Phys. Lett. A 374, 4238 (2010)

    Article  ADS  Google Scholar 

  18. R.H. Fowler, Mon. Not. R. Astron. Soc. 87, 114 (1926)

    Article  ADS  Google Scholar 

  19. D. Koester, Astron. Astrophys. 11, 33 (2002)

    ADS  Google Scholar 

  20. P.K. Shukla, B. Eliasson, Rev. Mod. Phys. 83, 885 (2011)

    Article  ADS  Google Scholar 

  21. P.K. Shukla, A.A. Mamun, D.A. Mendis, Phys. Rev. E 84, 026405 (2011)

    Article  ADS  Google Scholar 

  22. A.A. Mamun, Phys. Plasmas 24, 102306 (2017)

    Article  ADS  Google Scholar 

  23. A.A. Mamun, Phys. Plasmas 25, 022307 (2018)

    Article  ADS  Google Scholar 

  24. A.A. Mamun, Contrib. Plasma Phys. 59, e201900080 (2019)

    Google Scholar 

  25. A.A. Mamun, Phys. Lett. A 375, 4029 (2011)

    Article  ADS  Google Scholar 

  26. M. Asaduzzaman, A. Mannan, A.A. Mamun, Phys. Plasmas 24, 052102 (2017)

    Article  ADS  Google Scholar 

  27. M. Asaduzzaman, A. Mannan, A.A. Mamun, Contrib. Plasma Phys. 60, e2019000104 (2020)

    Google Scholar 

  28. A.A. Mamun, R.A. Cairns, P.K. Shukla, Phys. Plasmas 3, 702 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  29. A.A. Mamun, Astrophys. Space Sci. 268, 443 (1999)

    Article  ADS  Google Scholar 

  30. N.S. Saini, I. Kourakis, M.A. Hellberg, Phys. Plasmas 16, 062903 (2009)

    Article  ADS  Google Scholar 

  31. A.A. Mamun, P.K. Shukla, B. Eliasson, Phys. Rev. E 80, 046406 (2009)

    Article  ADS  Google Scholar 

  32. N. Roy, S. Tasnim, A.A. Mamun, Phys. Plasmas 19, 033705 (2012)

    Article  ADS  Google Scholar 

  33. E. Witt, W. Lotko, Phys. Fluids 26, 2176 (1983)

    Article  ADS  Google Scholar 

  34. V.E. Fortov, Phys. Usp. 52, 615 (2009)

    Article  ADS  Google Scholar 

  35. R.A. Cairns, A.A. Mamun, R. Bingham, R. Boström, R.O. Dendy, C.M.C. Nairn, P.K. Shukla, Geophys. Res. Lett 22, 2709 (1995)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Asaduzzaman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asaduzzaman, M. Arbitrary-amplitude self-gravitational solitary potential in a degenerate quantum plasma system. J. Korean Phys. Soc. 80, 214–220 (2022). https://doi.org/10.1007/s40042-022-00413-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-022-00413-1

Keywords

Navigation