Skip to main content
Log in

Four-dimensional nanofabrication for next-generation optical devices

  • Review - Atoms, Molecules and Optics
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Recently, three-dimensional (3D) nano-processing technology that can increase design freedom and space efficiency of devices has been being rapidly developed, and is highly expected to provide a key path for the development of next-generation optical devices. This technology has shown a high possibility of success in realizing the future devices, but still are facing many challenges in the popularization and practical application. In particular, the ability of quickly, precisely, and stably fabricating complex 3D nanostructures composed of many individual elements is strongly demanded. In recent years, the so-called four-dimensional (4D) nanofabrication technology is attracting attention. The 4D nanofabrication is achieved by applying an external force to manufactured two-dimensional nanostructures, inducing deformation in time, and then precisely transforming them into 3D nanostructures. The 4D nanofabrication technology with excellent flexibility, versatility, functionality, and reconfiguration properties provides a new paradigm enabling effectively control the mechanical, electrical, and optical properties of existing materials. In this review, we examine the conventional methods for fabricating 3D nanostructures, and then investigate 4D nanofabrication technology in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Komanduri, R., Chen, J., P. Malshe, A., Doumanidis, H., Rajurkar, K. P., "NSF-EC workshop on nanomanufacturing and processing: a summary report," Proc. SPIE 4936, Nano- and Microtechnology: Materials, Processes, Packaging, and Systems (2002)

  2. C.M. Soukoulis, M. Wegener, Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat. Photonics 5, 523–530 (2011)

    Article  ADS  Google Scholar 

  3. J. Langer et al., Present and future of surface-enhanced Raman scattering. ACS Nano 14, 28–117 (2020)

    Article  Google Scholar 

  4. S. Yi et al., Subwavelength angle-sensing photodetectors inspired by directional hearing in small animals. Nat. Nanotechnol. 13, 1143–1147 (2018)

    Article  ADS  Google Scholar 

  5. J. Shin, Overcoming the diffraction limit with metamaterials. Phys. High Technol. 21, 2 (2012)

    Article  Google Scholar 

  6. M. Kadic, G.W. Milton, M. van Hecke, M. Wegener, 3D metamaterials. Nat. Rev. Phys. 1, 198–210 (2019)

    Article  Google Scholar 

  7. S.J.B. Yoo, 2D and 3D heterogeneous photonic integrated circuits. 2016 Opt. Fiber Commun. Conf. Exhib. OFC (2016). https://doi.org/10.1117/12.2047502

    Article  Google Scholar 

  8. A. Shakouri, B. Liu, P. Abraham, J.E. Bowers, 3D photonic integrated circuits for WDM applications. Wavel. Div. Mult. A Crit. Rev. 10293, 102930I (1999)

    Article  Google Scholar 

  9. M.-L. Hsieh, P. Kuang, J.A. Bur, S. John, S.-Y. Lin, Review on recent progress of three-dimensional optical photonic crystal. AIP. Conf. Proc. 1590, 204–209 (2014)

    Article  ADS  Google Scholar 

  10. H. Chu et al., 4D printing: a review on recent progresses. Micromachines 11, 796 (2020)

    Article  Google Scholar 

  11. T. Jeon, D.H. Kim, S.G. Park, Holographic fabrication of 3D nanostructures. Adv. Mater. Interfaces 5, 1–13 (2018)

    Google Scholar 

  12. S. Jeon et al., Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks. Proc. Natl. Acad. Sci. USA 101, 12428–12433 (2004)

    Article  ADS  Google Scholar 

  13. Q. Geng, D. Wang, P. Chen, S.C. Chen, Ultrafast multi-focus 3-D nano-fabrication based on two-photon polymerization. Nat. Commun. 10, 1–7 (2019)

    Article  ADS  Google Scholar 

  14. J.D. Fowlkes et al., Simulation-guided 3D nanomanufacturing via focused electron beam induced deposition. ACS Nano 10, 6163–6172 (2016)

    Article  Google Scholar 

  15. A. Fernández-Pacheco et al., Three dimensional magnetic nanowires grown by focused electron-beam induced deposition. Sci. Rep. 3, 1 (2013)

    Article  Google Scholar 

  16. P.F.A. Alkemade, E.M. Koster, E. Van Veldhoven, D.J. Maas, Imaging and nanofabrication with the helium ion microscope of the van Leeuwenhoek laboratory in Delft. Scanning 34, 90–100 (2012)

    Article  Google Scholar 

  17. H. Zhao et al., Nanofabrication approaches for functional three-dimensional architectures. Nano Today 30, 100825 (2020)

    Article  Google Scholar 

  18. H. Qiu, Z.M. Hudson, M.A. Winnik, I. Manners, Multidimensional hierarchical self-assembly of amphiphilic cylindrical block comicelles. Science 347, 1329–1332 (2015)

    Article  ADS  Google Scholar 

  19. X. Liu et al., Complex silica composite nanomaterials templated with DNA origami. Nature (2018). https://doi.org/10.1038/s41586-018-0332-7

    Article  Google Scholar 

  20. L.L. Ong et al., Programmable self-assembly of three-dimensional nanostructures from 10,000 unique components. Nat. Publ. Gr. (2017). https://doi.org/10.1038/nature24648

    Article  Google Scholar 

  21. J.H. Cho et al., Nanoscale origami for 3D optics. Small 7, 1943–1948 (2011)

    Article  Google Scholar 

  22. J.S. Randhawa, M.D. Keung, P. Tyagi, D.H. Gracias, Reversible actuation of microstructures by surface-chemical modification of thin-film bilayers. Adv. Mater. 22, 407–410 (2010)

    Article  Google Scholar 

  23. Z. Tian et al., Deterministic self-rolling of ultrathin nanocrystalline diamond nanomembranes for 3D tubular/helical architecture. Adv. Mater. 29, 1604572 (2017)

    Article  Google Scholar 

  24. P.O. Vaccaro, K. Kubota, T. Fleischmann, S. Saravanan, T. Aida, Valley-fold and mountain-fold in the micro-origami technique. Microelectronics J. 34, 447–449 (2003)

    Article  Google Scholar 

  25. Z. Liang Wu et al., Three-dimensional shape transformations of hydrogel sheets induced by small-scale modulation of internal stresses. Nat. Commun. (2013). https://doi.org/10.1038/ncomms2549

    Article  Google Scholar 

  26. J. Zanardiocampo, Characterization of GaAs-based micro-origami mirrors by optical actuation. Microelectron. Eng. 73–74, 429–434 (2004)

    Article  Google Scholar 

  27. E. Smela, O. Inganäs, I. Lundström, Controlled folding of micrometer-size structures. Science (80–) 268, 1735–1738 (1995)

    Article  ADS  Google Scholar 

  28. J.H. Na et al., Programming reversibly self-folding origami with micropatterned photo-crosslinkable polymer trilayers. Adv. Mater. 27, 79–85 (2015)

    Article  Google Scholar 

  29. J.S. Randhawa et al., Pick-and-place using chemically actuated microgrippers. J. Am. Chem. Soc. 130, 17238–17239 (2008)

    Article  Google Scholar 

  30. A.J. Nichol, P.S. Stellman, W.J. Arora, G. Barbastathis, Two-step magnetic self-alignment of folded membranes for 3D nanomanufacturing. Microelectron. Eng. 84, 1168–1171 (2007)

    Article  Google Scholar 

  31. J.C. Breger et al., Self-folding thermo-magnetically responsive soft microgrippers. ACS Appl. Mater. Interfaces 7, 3398–3405 (2015)

    Article  Google Scholar 

  32. M.K. Blees et al., Graphene kirigami. Nature 524, 204–207 (2015)

    Article  ADS  Google Scholar 

  33. D.Y. Khang, H. Jiang, Y. Huang, J.A. Rogers, A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science (80–) 311, 208–212 (2006)

    Article  ADS  Google Scholar 

  34. Z. Yan et al., Three-dimensional mesostructures as high-temperature growth templates, electronic cellular scaffolds, and self-propelled microrobots. Proc. Natl. Acad. Sci. 114, E9455–E9464 (2017)

    Article  Google Scholar 

  35. Y. Zhang et al., Printing, folding and assembly methods for forming 3D mesostructures in advanced materials. Nat. Rev. Mater. 2, 1–17 (2017)

    ADS  Google Scholar 

  36. W. Liu, Q. Zou, C. Zheng, C. Jin, Metal-assisted transfer strategy for construction of 2D and 3D nanostructures on an elastic substrate. ACS Nano 13, 440–448 (2019)

    Article  Google Scholar 

  37. J. Li, Z. Liu, Focused-ion-beam-based nano-kirigami: from art to photonics. Nanophotonics 7, 1637–1650 (2018)

    Article  Google Scholar 

  38. H. Zhao, Y. Lei, 3D nanostructures for the next generation of high-performance nanodevices for electrochemical energy conversion and storage. Adv. Energy Mater. 10, 2001460 (2020)

    Article  Google Scholar 

  39. Q. Xu et al., Three-dimensional micro/nanoscale architectures: fabrication and applications. Nanoscale 7, 10883–10895 (2015)

    Article  ADS  Google Scholar 

  40. S. Chen, J. Chen, X. Zhang, Z.-Y. Li, J. Li, Kirigami/origami: unfolding the new regime of advanced 3D microfabrication/nanofabrication with “folding.” Light Sci. Appl. 9, 1–19 (2020)

    Article  Google Scholar 

  41. S.W. Robbins et al., Block copolymer self-assembly-directed synthesis of mesoporous gyroidal superconductors. Sci. Adv. 2, e1501119 (2016)

    Article  ADS  Google Scholar 

  42. P.W. Majewski et al., Resilient three-dimensional ordered architectures assembled from nanoparticles by DNA. Sci. Adv. 7, 1–11 (2021)

    Article  Google Scholar 

  43. C. Dai, J.H. Cho, In situ monitored self-assembly of three-dimensional polyhedral nanostructures. Nano Lett. 16, 3655–3660 (2016)

    Article  ADS  Google Scholar 

  44. W. Lee et al., Two-dimensional materials in functional three-dimensional architectures with applications in photodetection and imaging. Nat. Commun. 9, 1–9 (2018)

    ADS  Google Scholar 

  45. Z. Liu et al., Nano-kirigami with giant optical chirality. Sci. Adv. 4, 1–9 (2018)

    Article  Google Scholar 

  46. Y. Mao et al., Programmable bidirectional folding of metallic thin films for 3D chiral optical antennas. Adv. Mater. 29, 1606482 (2017)

    Article  Google Scholar 

  47. W. Xu et al., Ultrathin thermoresponsive self-folding 3D graphene. Sci. Adv. 3, e1701084 (2017)

    Article  ADS  Google Scholar 

  48. M. Humood et al., Fabrication and deformation of 3D multilayered kirigami microstructures. Small 14, 1–9 (2018)

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Research Foundation of Korea (Grant Nos. 2019M3E4A1078663, 2020R1A2C2010967), the KIST Institutional Program (Grant No. 2E31021-21-029), Institute for Information and Communications Technology Planning and Evaluation (IITP) Grant (Grant No. 2020-0-00947), and the KU-KIST School Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myung-Ki Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M., Kim, MK. Four-dimensional nanofabrication for next-generation optical devices. J. Korean Phys. Soc. 81, 516–524 (2022). https://doi.org/10.1007/s40042-022-00409-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-022-00409-x

Keywords

Navigation