Abstract
Terahertz (THz = 1012 Hz) spectroscopy has been recognized as a promising analytical technique for non-destructive, highly accurate investigation. However, despite its advantages, relatively long-wavelength and weak light-matter interaction limit the potential of these techniques to measure physical phenomena occurring within small areas and molecules, where lots of physical properties have been discovered. In this review, we introduce recent advances in THz near-field techniques as contact-free and non-invasive methods, particularly scattering-type scanning near-field optical microscopy (s-SNOM) with atomic force microscope (AFM) tip and transmission-type of photoconductive antenna microprobe (PCAM)-based THz near-field microscopy. Furthermore, practical applications of these cutting-edge spectroscopic methods are discussed.











Similar content being viewed by others
References
B. Ferguson, X.-C. Zhang, Nat. Mater. 1, 26 (2002)
P.H. Siegel, IEEE Trans. Microw. Theory 50, 910 (2002)
M. Tonouchi, Nat. Photonics 1, 97 (2007)
J. Ma et al., Nature 563, 89 (2018)
A. D’Arco et al., Condens. Matter 5, 25 (2020)
X. Yang et al., Trends Biotechnol. 34, 810 (2016)
D. Grischkowsky et al., J Opt. Soc. Am. B 7, 2006 (1990)
J.D. Buron et al., Sci. Rep. 5, 1 (2015)
J.D. Buron et al., Opt Express 23, 30721 (2015)
T.L. Cocker et al., Phys. Rev. B 96, 101 (2017)
P. Bøggild et al., 2 D Materials 4, 1003 (2017)
C.J. Docherty et al., ACS Nano 8, 11147 (2014)
S. Kar et al., ACS Nano 9, 12004 (2015)
D. Zhao, E.E.M. Chia, Adv. Opt. Mater. 8, 1900783 (2020)
T. Yuan, J.Z. Xu, X.-C. Zhang, Infrared Phys. Technol. 45, 417 (2004)
A.J.L. Adam, J. Infrared Millim. Terahertz Waves 32, 976 (2011)
P. Bazylewski, S. Ezugwu, G. Fanchini, Appl. Sci. 7, 973 (2017)
X. Chen et al., Adv. Mater. 31, 1804774 (2019)
A.J. Huber et al., Nano Lett. 8, 3766 (2008)
P. Klarskov et al., ACS Photonics 4, 2676 (2017)
J.H. Prosser et al., Nano Lett. 12, 5287 (2012)
H.T. Stinson et al., Nat. Commun. 9, 1 (2018)
M.C. Giordano et al., Opt. Express 26, 18423 (2018)
S. Mastel et al., Nano Lett. 17, 6526 (2017)
N. Fukuoka, K. Tanabe, Nanomaterials (Basel) 9, 1235 (2019)
D.K. Gramotnev, S.I. Bozhevolnyi, Nat. Photonics 8, 13 (2014)
C. Maissen et al., ACS Photonics 6, 1279 (2019)
R. HillenbRand, B. Knoll, F. Keilmann, J. Microsc. Oxf. 202, 77 (2001)
H. Wang, L. Wang, X.G. Xu, Nat. Commun. 7, 13212 (2016)
G. Dai et al., Appl. Spectrosc. Rev. 53, 1 (2018)
H.-T. Chen, R. Kersting, G.C. Cho, Appl. Phys. Lett. 83, 3009 (2003)
A.K. Geim, I.V. Grigorieva, Nature 499, 419 (2013)
J. Zhang et al., ACS Photonics 5, 2645 (2017)
D.A. Iranzo et al., Science 360, 291 (2018)
I. Epstein et al., Science 368, 1219 (2020)
I.-H. Lee et al., Nat. Nanotechnol. 14, 1 (2019)
P. Alonso-González et al., Nat. Nanotechnol. 12, 1 (2016)
M.B. Lundeberg et al., Science 357, 187 (2017)
A. Zylbersztejn, N.F. Mott, Phys. Rev. B 11, 4383 (1975)
M.M. Qazilbash et al., Appl. Phys. Lett. 92, 241906 (2008)
B.-G. Chae et al., Phys. B 369, 76 (2005)
M. Plankl et al., Nat. Photonics 15, 594 (2021)
O. Mitrofanov et al., Appl. Phys. Lett. 77, 591 (2000)
T.W. Ebbesen et al., Nature 391, 667 (1998)
A. Bitzer, M. Walther, Appl. Phys. Lett. 92, 231101 (2008)
A. Bitzer, A. Ortner, M. Walther, Appl. Opt. 49, E1 (2010)
A. Bitzer et al., Opt. Express 17, 3826 (2009)
M. Wächter, M. Nagel, H. Kurz, Appl. Phys. Lett. 95, 041112 (2009)
S. Atakaramians et al., Appl. Phys. Lett. 98, 121104 (2011)
M. Nagel, A. Michalski, H. Kurz, Opt. Express 19, 12509 (2011)
C. Matheisen et al., Opt. Express 22, 5252 (2014)
A. Bhattacharya, J.G. Rivas, APL Photonics 1, 086103 (2016)
A. Bhattacharya et al., Phys. Rev. B (2016). https://doi.org/10.1103/PhysRevD.93.093008
Q. Xu et al., Phys. Rev. Lett. 96, 101 (2006)
X. Yang et al., Phys. Rev. Lett. 102, 173902 (2009)
S. Zhang et al., Phys. Rev. Lett. 101, 047401 (2008)
T.-T. Kim et al., ACS Photonics 5, 1800 (2018)
A. Halpin et al., Appl. Phys. Lett. 110, 101105 (2017)
Z. Han, S.I. Bozhevolnyi, Rep. Prog. Phys. 76, 016402 (2013)
W.L. Barnes, A. Dereux, T.W. Ebbesen, Nature 424, 824 (2003)
T.W. Ebbesen, C. Genet, S.I. Bozhevolnyi, Phys. Today 61, 44 (2008)
J. Li et al., Sci. Adv. 4, eaar6768 (2018)
X. Zhang et al., Adv. Photonics 2, 1 (2020)
C.R. Williams et al., Nat. Photonics 2, 175 (2008)
L. Shen, X. Chen, T.-J. Yang, Opt. Express 16, 3326 (2008)
Z. Ruan, M. Qiu, Appl. Phys. Lett. 90, 201906 (2007)
X. Wan et al., Appl. Phys. Lett. 105, 121603 (2014)
J. Saxler et al., Phys. Rev. B 69, 155427 (2004)
M. Gong, T.-I. Jeon, D. Grischkowsky, Opt. Express 17, 17088 (2009)
J.F. O’Hara, R.D. Averitt, A.J. Taylor, Opt. Express 13, 6117 (2005)
J.F. O’Hara, R.D. Averitt, A.J. Taylor, Opt. Express 12, 6397 (2004)
Y. Xu et al., Appl. Phys. Lett. 107, 021105 (2015)
S. Wang et al., Appl. Phys. Lett. 107, 243504 (2015)
X. Zhang et al., Adv. Mater. 27, 7123 (2015)
X. Zang et al., Adv. Opt. Mater. 7, 1801328 (2019)
Q. Xu et al., Laser Photonics Rev. 11, 1600212 (2017)
Q. Xu et al., Sci. Adv. 2, e1501142 (2016)
Q. Xu et al., Optica 4, 1044 (2017)
M. Yuan et al., Nanophotonics (Berlin) 8, 1811 (2019)
M. Yuan et al., Iscience 23, 101685 (2020)
J.B. Baxter, G.W. Guglietta, Anal. Chem. 83, 4342 (2011)
J.A. Spies et al., J. Phys. Chem. C 124, 22335 (2020)
S. Sim et al., Phys. Rev. B 89, 165137 (2014)
B.C. Park et al., Nat. Commun. 6, 6552 (2015)
L. Wu et al., Science 354, 1124 (2016)
M. Nagel et al., Opt. Express 19, 4667 (2011)
N. Hoof et al., Adv. Opt. Mater 8, 1900790 (2020)
J. Ruhkopf et al., ACS Appl. Mater. Interfaces. 1, 1909 (2019)
A. Quellmalz et al., Nat. Commun. 12, 917 (2021)
G. Geng et al., Biotechnol. Progr. 35, e2741 (2018)
Z. Li et al., Cell. Prolif. 53, 88 (2020)
U. Schade et al., Appl. Phys. Lett. 84, 1422 (2004)
D.M. Mittleman, Opt. Express 26, 9417 (2018)
S.-H. Lee et al., Biosens. Bioelectron. 170, 163 (2020)
C.-M. Chiu et al., Opt. Lett. 34, 1084 (2009)
P.C. Ashworth et al., Opt. Express 17, 12444 (2009)
C. Heo et al., ACS Nano 14, 6548 (2020)
Acknowledgements
This work was supported by the 2020 Research Fund of University of Ulsan.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Seo, C., Kim, TT. Terahertz near-field spectroscopy for various applications. J. Korean Phys. Soc. 81, 549–561 (2022). https://doi.org/10.1007/s40042-022-00404-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40042-022-00404-2

