Skip to main content

Advertisement

Log in

Terahertz near-field spectroscopy for various applications

  • Review - Atoms, Molecules and Optics
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Terahertz (THz = 1012 Hz) spectroscopy has been recognized as a promising analytical technique for non-destructive, highly accurate investigation. However, despite its advantages, relatively long-wavelength and weak light-matter interaction limit the potential of these techniques to measure physical phenomena occurring within small areas and molecules, where lots of physical properties have been discovered. In this review, we introduce recent advances in THz near-field techniques as contact-free and non-invasive methods, particularly scattering-type scanning near-field optical microscopy (s-SNOM) with atomic force microscope (AFM) tip and transmission-type of photoconductive antenna microprobe (PCAM)-based THz near-field microscopy. Furthermore, practical applications of these cutting-edge spectroscopic methods are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. B. Ferguson, X.-C. Zhang, Nat. Mater. 1, 26 (2002)

    Article  ADS  Google Scholar 

  2. P.H. Siegel, IEEE Trans. Microw. Theory 50, 910 (2002)

    Article  Google Scholar 

  3. M. Tonouchi, Nat. Photonics 1, 97 (2007)

    Article  ADS  Google Scholar 

  4. J. Ma et al., Nature 563, 89 (2018)

    Article  ADS  Google Scholar 

  5. A. D’Arco et al., Condens. Matter 5, 25 (2020)

    Article  Google Scholar 

  6. X. Yang et al., Trends Biotechnol. 34, 810 (2016)

    Article  Google Scholar 

  7. D. Grischkowsky et al., J Opt. Soc. Am. B 7, 2006 (1990)

    Article  ADS  Google Scholar 

  8. J.D. Buron et al., Sci. Rep. 5, 1 (2015)

    Article  Google Scholar 

  9. J.D. Buron et al., Opt Express 23, 30721 (2015)

    Article  ADS  Google Scholar 

  10. T.L. Cocker et al., Phys. Rev. B 96, 101 (2017)

    Article  Google Scholar 

  11. P. Bøggild et al., 2 D Materials 4, 1003 (2017)

    Google Scholar 

  12. C.J. Docherty et al., ACS Nano 8, 11147 (2014)

    Article  Google Scholar 

  13. S. Kar et al., ACS Nano 9, 12004 (2015)

    Article  Google Scholar 

  14. D. Zhao, E.E.M. Chia, Adv. Opt. Mater. 8, 1900783 (2020)

    Article  Google Scholar 

  15. T. Yuan, J.Z. Xu, X.-C. Zhang, Infrared Phys. Technol. 45, 417 (2004)

    Article  ADS  Google Scholar 

  16. A.J.L. Adam, J. Infrared Millim. Terahertz Waves 32, 976 (2011)

    Article  Google Scholar 

  17. P. Bazylewski, S. Ezugwu, G. Fanchini, Appl. Sci. 7, 973 (2017)

    Article  Google Scholar 

  18. X. Chen et al., Adv. Mater. 31, 1804774 (2019)

    Article  Google Scholar 

  19. A.J. Huber et al., Nano Lett. 8, 3766 (2008)

    Article  ADS  Google Scholar 

  20. P. Klarskov et al., ACS Photonics 4, 2676 (2017)

    Article  Google Scholar 

  21. J.H. Prosser et al., Nano Lett. 12, 5287 (2012)

    Article  ADS  Google Scholar 

  22. H.T. Stinson et al., Nat. Commun. 9, 1 (2018)

    Article  Google Scholar 

  23. M.C. Giordano et al., Opt. Express 26, 18423 (2018)

    Article  ADS  Google Scholar 

  24. S. Mastel et al., Nano Lett. 17, 6526 (2017)

    Article  ADS  Google Scholar 

  25. N. Fukuoka, K. Tanabe, Nanomaterials (Basel) 9, 1235 (2019)

    Article  Google Scholar 

  26. D.K. Gramotnev, S.I. Bozhevolnyi, Nat. Photonics 8, 13 (2014)

    Article  ADS  Google Scholar 

  27. C. Maissen et al., ACS Photonics 6, 1279 (2019)

    Article  Google Scholar 

  28. R. HillenbRand, B. Knoll, F. Keilmann, J. Microsc. Oxf. 202, 77 (2001)

    Article  Google Scholar 

  29. H. Wang, L. Wang, X.G. Xu, Nat. Commun. 7, 13212 (2016)

    Article  ADS  Google Scholar 

  30. G. Dai et al., Appl. Spectrosc. Rev. 53, 1 (2018)

    Article  ADS  Google Scholar 

  31. H.-T. Chen, R. Kersting, G.C. Cho, Appl. Phys. Lett. 83, 3009 (2003)

    Article  ADS  Google Scholar 

  32. A.K. Geim, I.V. Grigorieva, Nature 499, 419 (2013)

    Article  Google Scholar 

  33. J. Zhang et al., ACS Photonics 5, 2645 (2017)

    Article  Google Scholar 

  34. D.A. Iranzo et al., Science 360, 291 (2018)

    Article  ADS  Google Scholar 

  35. I. Epstein et al., Science 368, 1219 (2020)

    Article  ADS  Google Scholar 

  36. I.-H. Lee et al., Nat. Nanotechnol. 14, 1 (2019)

    Article  ADS  Google Scholar 

  37. P. Alonso-González et al., Nat. Nanotechnol. 12, 1 (2016)

    Google Scholar 

  38. M.B. Lundeberg et al., Science 357, 187 (2017)

    Article  ADS  Google Scholar 

  39. A. Zylbersztejn, N.F. Mott, Phys. Rev. B 11, 4383 (1975)

    Article  ADS  Google Scholar 

  40. M.M. Qazilbash et al., Appl. Phys. Lett. 92, 241906 (2008)

    Article  ADS  Google Scholar 

  41. B.-G. Chae et al., Phys. B 369, 76 (2005)

    Article  ADS  Google Scholar 

  42. M. Plankl et al., Nat. Photonics 15, 594 (2021)

    Article  ADS  Google Scholar 

  43. O. Mitrofanov et al., Appl. Phys. Lett. 77, 591 (2000)

    Article  ADS  Google Scholar 

  44. T.W. Ebbesen et al., Nature 391, 667 (1998)

    Article  ADS  Google Scholar 

  45. A. Bitzer, M. Walther, Appl. Phys. Lett. 92, 231101 (2008)

    Article  ADS  Google Scholar 

  46. A. Bitzer, A. Ortner, M. Walther, Appl. Opt. 49, E1 (2010)

    Article  ADS  Google Scholar 

  47. A. Bitzer et al., Opt. Express 17, 3826 (2009)

    Article  ADS  Google Scholar 

  48. M. Wächter, M. Nagel, H. Kurz, Appl. Phys. Lett. 95, 041112 (2009)

    Article  ADS  Google Scholar 

  49. S. Atakaramians et al., Appl. Phys. Lett. 98, 121104 (2011)

    Article  ADS  Google Scholar 

  50. M. Nagel, A. Michalski, H. Kurz, Opt. Express 19, 12509 (2011)

    Article  ADS  Google Scholar 

  51. C. Matheisen et al., Opt. Express 22, 5252 (2014)

    Article  ADS  Google Scholar 

  52. A. Bhattacharya, J.G. Rivas, APL Photonics 1, 086103 (2016)

    Article  ADS  Google Scholar 

  53. A. Bhattacharya et al., Phys. Rev. B (2016). https://doi.org/10.1103/PhysRevD.93.093008

    Article  Google Scholar 

  54. Q. Xu et al., Phys. Rev. Lett. 96, 101 (2006)

    Google Scholar 

  55. X. Yang et al., Phys. Rev. Lett. 102, 173902 (2009)

    Article  ADS  Google Scholar 

  56. S. Zhang et al., Phys. Rev. Lett. 101, 047401 (2008)

    Article  ADS  Google Scholar 

  57. T.-T. Kim et al., ACS Photonics 5, 1800 (2018)

    Article  Google Scholar 

  58. A. Halpin et al., Appl. Phys. Lett. 110, 101105 (2017)

    Article  ADS  Google Scholar 

  59. Z. Han, S.I. Bozhevolnyi, Rep. Prog. Phys. 76, 016402 (2013)

    Article  ADS  Google Scholar 

  60. W.L. Barnes, A. Dereux, T.W. Ebbesen, Nature 424, 824 (2003)

    Article  ADS  Google Scholar 

  61. T.W. Ebbesen, C. Genet, S.I. Bozhevolnyi, Phys. Today 61, 44 (2008)

    Article  ADS  Google Scholar 

  62. J. Li et al., Sci. Adv. 4, eaar6768 (2018)

    Article  ADS  Google Scholar 

  63. X. Zhang et al., Adv. Photonics 2, 1 (2020)

    Google Scholar 

  64. C.R. Williams et al., Nat. Photonics 2, 175 (2008)

    Article  ADS  Google Scholar 

  65. L. Shen, X. Chen, T.-J. Yang, Opt. Express 16, 3326 (2008)

    Article  ADS  Google Scholar 

  66. Z. Ruan, M. Qiu, Appl. Phys. Lett. 90, 201906 (2007)

    Article  ADS  Google Scholar 

  67. X. Wan et al., Appl. Phys. Lett. 105, 121603 (2014)

    Article  ADS  Google Scholar 

  68. J. Saxler et al., Phys. Rev. B 69, 155427 (2004)

    Article  ADS  Google Scholar 

  69. M. Gong, T.-I. Jeon, D. Grischkowsky, Opt. Express 17, 17088 (2009)

    Article  ADS  Google Scholar 

  70. J.F. O’Hara, R.D. Averitt, A.J. Taylor, Opt. Express 13, 6117 (2005)

    Article  ADS  Google Scholar 

  71. J.F. O’Hara, R.D. Averitt, A.J. Taylor, Opt. Express 12, 6397 (2004)

    Article  ADS  Google Scholar 

  72. Y. Xu et al., Appl. Phys. Lett. 107, 021105 (2015)

    Article  ADS  Google Scholar 

  73. S. Wang et al., Appl. Phys. Lett. 107, 243504 (2015)

    Article  ADS  Google Scholar 

  74. X. Zhang et al., Adv. Mater. 27, 7123 (2015)

    Article  Google Scholar 

  75. X. Zang et al., Adv. Opt. Mater. 7, 1801328 (2019)

    Article  Google Scholar 

  76. Q. Xu et al., Laser Photonics Rev. 11, 1600212 (2017)

    Article  ADS  Google Scholar 

  77. Q. Xu et al., Sci. Adv. 2, e1501142 (2016)

    Article  ADS  Google Scholar 

  78. Q. Xu et al., Optica 4, 1044 (2017)

    Article  ADS  Google Scholar 

  79. M. Yuan et al., Nanophotonics (Berlin) 8, 1811 (2019)

    Article  Google Scholar 

  80. M. Yuan et al., Iscience 23, 101685 (2020)

    Article  ADS  Google Scholar 

  81. J.B. Baxter, G.W. Guglietta, Anal. Chem. 83, 4342 (2011)

    Article  Google Scholar 

  82. J.A. Spies et al., J. Phys. Chem. C 124, 22335 (2020)

    Article  Google Scholar 

  83. S. Sim et al., Phys. Rev. B 89, 165137 (2014)

    Article  ADS  Google Scholar 

  84. B.C. Park et al., Nat. Commun. 6, 6552 (2015)

    Article  ADS  Google Scholar 

  85. L. Wu et al., Science 354, 1124 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  86. M. Nagel et al., Opt. Express 19, 4667 (2011)

    Article  ADS  Google Scholar 

  87. N. Hoof et al., Adv. Opt. Mater 8, 1900790 (2020)

    Article  Google Scholar 

  88. J. Ruhkopf et al., ACS Appl. Mater. Interfaces. 1, 1909 (2019)

    Article  Google Scholar 

  89. A. Quellmalz et al., Nat. Commun. 12, 917 (2021)

    Article  ADS  Google Scholar 

  90. G. Geng et al., Biotechnol. Progr. 35, e2741 (2018)

    Article  Google Scholar 

  91. Z. Li et al., Cell. Prolif. 53, 88 (2020)

    Google Scholar 

  92. U. Schade et al., Appl. Phys. Lett. 84, 1422 (2004)

    Article  ADS  Google Scholar 

  93. D.M. Mittleman, Opt. Express 26, 9417 (2018)

    Article  ADS  Google Scholar 

  94. S.-H. Lee et al., Biosens. Bioelectron. 170, 163 (2020)

    Google Scholar 

  95. C.-M. Chiu et al., Opt. Lett. 34, 1084 (2009)

    Article  ADS  Google Scholar 

  96. P.C. Ashworth et al., Opt. Express 17, 12444 (2009)

    Article  ADS  Google Scholar 

  97. C. Heo et al., ACS Nano 14, 6548 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the 2020 Research Fund of University of Ulsan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teun-Teun Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, C., Kim, TT. Terahertz near-field spectroscopy for various applications. J. Korean Phys. Soc. 81, 549–561 (2022). https://doi.org/10.1007/s40042-022-00404-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-022-00404-2

Keywords