Skip to main content
Log in

Terahertz spectroscopy of high temperature superconductors and their photonic applications

  • Review - Atoms, Molecules and Optics
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

An Erratum to this article was published on 30 March 2022

This article has been updated

Abstract

Development of the ultrashort pulse lasers made it possible to realize the terahertz (THz) generation and detection in a broad frequency range between 0.1 and 30 THz. Extensive studies of the superconducting materials have been performed from basic sciences to the photonic applications because the THz frequencies span the gap in the electromagnetic spectrum between the electronic and the photonic technologies. Especially, the ultrashort pulses allow us to monitor the non-equilibrium dynamics of the superconductors and develop the ultrafast switching. Starting from a brief overview of the cuprate superconductor, we review the basic optical properties and photonic applications of the superconductors in a wide range of THz frequencies. It should be noted that numerous equilibrium and non-equilibrium THz spectroscopic measurements of the high temperature superconductors demonstrated the existence of the superconducting gap and its recovery dynamics and also terahertz electromagnetic wave modulation combined with the concept of metamaterials. These superconducting metamaterials will pave the way for better understanding of the new material properties and giving new ideas in application aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

References

  1. J. G. Bednorz, K. A. Müller, Possible high-TC superconductivity in the Ba-La-Cu-O system. Z. Phys. B 64, 189 (1986). https://doi.org/10.1007/Bf01303701

    Article  ADS  Google Scholar 

  2. B. Keimer et al., From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179 (2015). https://doi.org/10.1038/nature14165

    Article  ADS  Google Scholar 

  3. R. Comin, A. Damascelli, Resonant X-ray scattering studies of charge order in cuprates. Annu. Rev. Condens. Matter Phys. 7, 369 (2016). https://doi.org/10.1146/annurev-conmatphys-031115-011401

    Article  ADS  Google Scholar 

  4. C. Giannetti et al., Ultrafast optical spectroscopy of strongly correlated materials and high-temperature superconductors: a non-equilibrium approach. Adv. Phys. 65, 58 (2016). https://doi.org/10.1080/00018732.2016.1194044

    Article  ADS  Google Scholar 

  5. D. N. Basov, T. Timusk, Electrodynamics of high-TC superconductors. Rev. Mod. Phys. 77, 721 (2005). https://doi.org/10.1103/RevModPhys.77.721

    Article  ADS  Google Scholar 

  6. Ø. Fischer et al., Scanning tunneling spectroscopy of high-temperature superconductors. Rev. Mod. Phys. 79, 353 (2007). https://doi.org/10.1103/RevModPhys.79.353

    Article  ADS  Google Scholar 

  7. J. Oh et al., Role of interlayer coupling in alkaline-substituted (Bi, Pb)-2223 superconductors. J. Alloys Compd. 804, 348 (2019). https://doi.org/10.1016/j.jallcom.2019.07.029

    Article  Google Scholar 

  8. A. Damascelli, Z. Hussain, Z. X. Shen, Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75, 473 (2003). https://doi.org/10.1103/RevModPhys.75.473

    Article  ADS  Google Scholar 

  9. M. Hashimoto et al., Energy gaps in high-transition-temperature cuprate superconductors. Nat. Phys. 10, 483 (2014). https://doi.org/10.1038/Nphys3009

    Article  Google Scholar 

  10. B. Loret et al., Intimate link between charge density wave, pseudogap and superconducting energy scales in cuprates. Nat. Phys. 15, 771 (2019). https://doi.org/10.1038/s41567-019-0509-5

    Article  Google Scholar 

  11. C. C. Homes et al., Optical conductivity of nodal metals. Sci. Rep. 3, 3446 (2013). https://doi.org/10.1038/srep03446

    Article  Google Scholar 

  12. C. C. Homes et al., Sum rules and energy scales in the high-temperature superconductor YBa2Cu3O6+x. Phys. Rev. B 69, 024514 (2004). https://doi.org/10.1103/PhysRevB.69.024514

    Article  ADS  Google Scholar 

  13. A. Pashkin et al., Femtosecond response of quasiparticles and phonons in superconducting YBa2Cu3O7-δ studied by wideband terahertz spectroscopy. Phys. Rev. Lett. 105, 067001 (2010). https://doi.org/10.1103/PhysRevLett.105.067001

    Article  ADS  Google Scholar 

  14. A. Cavalleri, Photo-induced superconductivity. Contemp. Phys. 59, 31 (2018). https://doi.org/10.1080/00107514.2017.1406623

    Article  ADS  Google Scholar 

  15. A. Lanzara et al., Evidence for ubiquitous strong electron–phonon coupling in high-temperature superconductors. Nature 412, 510 (2001). https://doi.org/10.1038/35087518

    Article  ADS  Google Scholar 

  16. P. Tassin, T. Koschny, M. Kafesaki, C. M. Soukoulis, A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics. Nat. Photonics 6, 259 (2012). https://doi.org/10.1038/nphoton.2012.27

    Article  ADS  Google Scholar 

  17. A. Tsiatmas, V. A. Fedotov, F. J. G. de Abajo, N. I. Zheludev, Low-loss terahertz superconducting plasmonics. N. J. Phys. 14, 115006 (2012). https://doi.org/10.1088/1367-2630/14/11/115006

    Article  Google Scholar 

  18. Y. K. Srivastava, R. Singh, Impact of conductivity on Lorentzian and Fano resonant high-Q THz metamaterials: superconductor, metal and perfect electric conductor. J. Appl. Phys. 122, 183104 (2017). https://doi.org/10.1063/1.4994951

    Article  ADS  Google Scholar 

  19. Y. K. Srivastava, M. Manjappa, H. N. S. Krishnamoorthy, R. Singh, Accessing the high-Q dark plasmonic fano resonances in superconductor metasurfaces. Adv. Opt. Mater. 4, 1875 (2016). https://doi.org/10.1002/adom.201600354

    Article  Google Scholar 

  20. V. A. Fedotov et al., Temperature control of Fano resonances and transmission in superconducting metamaterials. Opt. Express 18, 9015 (2010). https://doi.org/10.1364/Oe.18.009015

    Article  ADS  Google Scholar 

  21. Z. Tian et al., Terahertz superconducting plasmonic hole array. Opt. Express 35, 3586 (2010). https://doi.org/10.1364/Ol.35.003586

    Article  Google Scholar 

  22. V. Savinov et al., Modulating sub-THz radiation with current in superconducting metamaterial. Phys. Rev. Lett. 109, 243904 (2012). https://doi.org/10.1103/PhysRevLett.109.243904

    Article  ADS  Google Scholar 

  23. R. Singh et al., Optical tuning and ultrafast dynamics of high-temperature superconducting terahertz metamaterials. Nanophotonics 1, 117 (2012). https://doi.org/10.1515/nanoph-2012-0007

    Article  ADS  Google Scholar 

  24. W. Cao et al., Plasmon-induced transparency in metamaterials: Active near field coupling between bright superconducting and dark metallic mode resonators. Appl. Phys. Lett. 103, 101106 (2013). https://doi.org/10.1063/1.4819389

    Article  ADS  Google Scholar 

  25. O. Limaj et al., Superconductivity-induced transparency in terahertz metamaterials. ACS Photonics 1, 570 (2014). https://doi.org/10.1021/ph500104k

    Article  Google Scholar 

  26. C. Li et al., Electrical dynamic modulation of THz radiation based on superconducting metamaterials. Appl. Phys. Lett. 111, 092601 (2017). https://doi.org/10.1063/1.4997097

    Article  ADS  Google Scholar 

  27. Y. K. Srivastava et al., A superconducting dual-channel photonic switch. Adv. Mater. 30, 1801257 (2018). https://doi.org/10.1002/adma.201801257

    Article  Google Scholar 

  28. S. D. Brorson et al., Electrodynamics of high-temperature superconductors investigated with coherent terahertz pulse spectroscopy. J. Opt. Soc. Am. B 13, 1979 (1996). https://doi.org/10.1364/Josab.13.001979

    Article  ADS  Google Scholar 

  29. C. S. Tang et al., Terahertz conductivity of topological surface states in Bi1.5Sb0.5Te1.8Se1.2. Sci. Rep. 3, 3513 (2013). https://doi.org/10.1038/srep03513

    Article  Google Scholar 

  30. T. Hong et al., Terahertz electrodynamics and superconducting energy gap of NbTiN. J. Appl. Phys. 114, 243905 (2013). https://doi.org/10.1063/1.4856995

    Article  ADS  Google Scholar 

  31. B. C. Park et al., Terahertz single conductance quantum and topological phase transitions in topological insulator Bi2Se3 ultrathin films. Nat. Commun. 6, 6552 (2015). https://doi.org/10.1038/ncomms7552

    Article  ADS  Google Scholar 

  32. K. I. Sim et al., Terahertz electrodynamics and superconducting energy gap of NbN. J. Korean Phys. Soc. 71, 571 (2017). https://doi.org/10.3938/jkps.71.571

    Article  ADS  Google Scholar 

  33. B. Cheng et al., Terahertz conductivity of the magnetic Weyl semimetal Mn3Sn films. Appl. Phys. Lett. 115, 012405 (2019). https://doi.org/10.1063/1.5093414

    Article  ADS  Google Scholar 

  34. G. Ji et al., Terahertz time domain spectroscopy of GdBCO superconducting thin films. Prog. Supercond. Cryog. 21, 15 (2019). https://doi.org/10.9714/psac.2019.21.1.015

    Article  Google Scholar 

  35. H. T. Lee et al., Measuring complex refractive indices of a nanometer-thick superconducting film using terahertz time-domain spectroscopy with a 10 femtoseconds pulse laser. Crystals 11, 651 (2021). https://doi.org/10.3390/cryst11060651

    Article  Google Scholar 

  36. D. N. Basov et al., Electrodynamics of correlated electron materials. Rev. Mod. Phys. 83, 471 (2011). https://doi.org/10.1103/RevModPhys.83.471

    Article  ADS  Google Scholar 

  37. O. G. Vendik, I. B. Vendik, D. I. Kaparkov, Empirical model of the microwave properties of high-temperature superconductors. IEEE Trans. Microw. Theory Tech. 46, 469 (1998). https://doi.org/10.1109/22.668643

    Article  ADS  Google Scholar 

  38. A. J. Berlinsky, C. Kallin, G. Rose, A. C. Shi, Two-fluid interpretation of the conductivity of clean BCS superconductors. Phys. Rev. B 48, 4074 (1993). https://doi.org/10.1103/PhysRevB.48.4074

    Article  ADS  Google Scholar 

  39. R. A. Kaindl et al., Dynamics of cooper pair formation in Bi2Sr2CaCu2O8+δ. Phys. Rev. B 72, 060510(R) (2005). https://doi.org/10.1103/PhysRevB.72.060510

    Article  ADS  Google Scholar 

  40. Y. S. Lee, Quasiparticle dynamics and superconductivity in the 60-K phase of YBa2Cu3Oy. J. Korean Phys. Soc. 50, 1109 (2007). https://doi.org/10.3938/jkps.50.1109

    Article  ADS  Google Scholar 

  41. J. Hwang, T. Timusk, G. D. Gu, Doping dependent optical properties of Bi2Sr2CaCu2O8+δ. J. Phys. Condens. Matter 19, 125208 (2007). https://doi.org/10.1088/0953-8984/19/12/125208

    Article  ADS  Google Scholar 

  42. R. Buhleier et al., Anomalous behavior of the complex conductivity of Y1-xPrxBa2Cu3O7 observed with THz spectroscopy. Phys. Rev. B 50, 9672(R) (1994). https://doi.org/10.1103/PhysRevB.50.9672

    Article  ADS  Google Scholar 

  43. S. M. Quinlan, P. J. Hirschfeld, D. J. Scalapino, Infrared conductivity of a \(d_{x^2-y^2}\)-wave superconductor with impurity and spin-fluctuation scattering. Phys. Rev. B 53, 8575 (1996). https://doi.org/10.1103/PhysRevB.53.8575

    Article  ADS  Google Scholar 

  44. J. Corson et al., Nodal quasiparticle lifetime in the superconducting state of Bi2Sr2CaCu2O8+δ. Phys. Rev. Lett. 85, 2569 (2000). https://doi.org/10.1103/PhysRevLett.85.2569

    Article  ADS  Google Scholar 

  45. P. J. Turner et al., Observation of weak-limit quasiparticle scattering via broadband microwave spectroscopy of a d-wave superconductor. Phys. Rev. Lett. 90, 237005 (2003). https://doi.org/10.1103/PhysRevLett.90.237005

    Article  ADS  Google Scholar 

  46. C. Giannetti et al., Discontinuity of the ultrafast electronic response of underdoped superconducting Bi2Sr2CaCu2O8+δ strongly excited by ultrashort light pulses. Phys. Rev. B 79, 224502 (2009). https://doi.org/10.1103/PhysRevB.79.224502

    Article  ADS  Google Scholar 

  47. A. Pashkin et al., Ultrafast insulator-metal phase transition in VO2 studied by multiterahertz spectroscopy. Phys. Rev. B 83, 195120 (2011). https://doi.org/10.1103/PhysRevB.83.195120

    Article  ADS  Google Scholar 

  48. C. Giannetti et al., Revealing the high-energy electronic excitations underlying the onset of high-temperature superconductivity in cuprates. Nat. Commun. 2, 353 (2011). https://doi.org/10.1038/ncomms1354

    Article  ADS  Google Scholar 

  49. G. Coslovich et al., Evidence for a photoinduced nonthermal superconducting-to-normal-state phase transition in overdoped Bi2Sr2Ca0.92Y0.08Cu2O8+δ. Phys. Rev. B 83, 064519 (2011). https://doi.org/10.1103/PhysRevB.83.064519

    Article  ADS  Google Scholar 

  50. K. W. Kim et al., Ultrafast transient generation of spin-density-wave order in the normal state of BaFe2As2 driven by coherent lattice vibrations. Nat. Mater. 11, 497 (2012). https://doi.org/10.1038/nmat3294

    Article  ADS  Google Scholar 

  51. S. Dal Conte et al., Disentangling the electronic and phononic glue in a high-TC superconductor. Science 335, 1600 (2012). https://doi.org/10.1126/science.1216765

    Article  ADS  Google Scholar 

  52. G. Coslovich et al., Ultrafast charge localization in a stripe-phase nickelate. Nat. Commun. 4, 2643 (2013). https://doi.org/10.1038/ncomms3643

    Article  ADS  Google Scholar 

  53. M. Porer et al., Non-thermal separation of electronic and structural orders in a persisting charge density wave. Nat. Mater. 13, 857 (2014). https://doi.org/10.1038/nmat4042

    Article  ADS  Google Scholar 

  54. S. Sim et al., Ultrafast terahertz dynamics of hot Dirac-electron surface scattering in the topological insulator Bi2Se3. Phys. Rev. B 89, 165137 (2014). https://doi.org/10.1103/PhysRevB.89.165137

    Article  ADS  Google Scholar 

  55. F. Novelli et al., Witnessing the formation and relaxation of dressed quasi-particles in a strongly correlated electron system. Nat. Commun. 5, 5112 (2014). https://doi.org/10.1038/ncomms6112

    Article  ADS  Google Scholar 

  56. F. Cilento et al., Photo-enhanced antinodal conductivity in the pseudogap state of high-TC cuprates. Nat. Commun. 5, 4353 (2014). https://doi.org/10.1038/ncomms5353

    Article  ADS  Google Scholar 

  57. S. Sim et al., Tunable Fano quantum-interference dynamics using a topological phase transition in (Bi1-xInx)2Se3. Phys. Rev. B 91, 235438 (2015). https://doi.org/10.1103/PhysRevB.91.235438

    Article  ADS  Google Scholar 

  58. C. Poellmann et al., Resonant internal quantum transitions and femtosecond radiative decay of excitons in monolayer WSe2. Nat. Mater. 14, 889 (2015). https://doi.org/10.1038/Nmat4356

    Article  ADS  Google Scholar 

  59. S. Gerber et al., Direct characterization of photoinduced lattice dynamics in BaFe2As2. Nat. Commun. 6, 7377 (2015). https://doi.org/10.1038/ncomms8377

    Article  ADS  Google Scholar 

  60. S. Dal Conte et al., Snapshots of the retarded interaction of charge carriers with ultrafast fluctuations in cuprates. Nat. Phys. 11, 421 (2015). https://doi.org/10.1038/Nphys3265

    Article  Google Scholar 

  61. S. Sim et al., Composition control of plasmon-phonon interaction using topological quantum-phase transition in photoexcited (Bi1-xInx)2Se3. ACS Photonics 3, 1426 (2016). https://doi.org/10.1021/acsphotonics.6b00021

    Article  Google Scholar 

  62. S. Cha et al., 1s-intraexcitonic dynamics in monolayer MoS2 probed by ultrafast mid-infrared spectroscopy. Nat. Commun. 7, 10768 (2016). https://doi.org/10.1038/ncomms10768

    Article  ADS  Google Scholar 

  63. G. Coslovich et al., Ultrafast dynamics of vibrational symmetry breaking in a charge-ordered nickelate. Sci. Adv. 3, e1600735 (2017). https://doi.org/10.1126/sciadv.1600735

    Article  ADS  Google Scholar 

  64. S. Gerber et al., Femtosecond electron-phonon lock-in by photoemission and x-ray free-electron laser. Science 357, 71 (2017). https://doi.org/10.1126/science.aak9946

    Article  ADS  Google Scholar 

  65. W. Yang et al., Time-resolved observations of photo-generated charge-carrier dynamics in Sb2Se3 photocathodes for photoelectrochemical water splitting. ACS Nano 12, 11088 (2018). https://doi.org/10.1021/acsnano.8b05446

    Article  Google Scholar 

  66. C. In, H. Choi, Terahertz investigation of dirac materials: graphene and topological insulators. J Korean Phys Soc 72, 1484 (2018). https://doi.org/10.3938/jkps.72.1484

    Article  Google Scholar 

  67. C. In et al., Control over electron-phonon interaction by dirac plasmon engineering in the Bi2Se3 topological insulator. Nano Lett. 18, 734 (2018). https://doi.org/10.1021/acs.nanolett.7b03897

    Article  ADS  Google Scholar 

  68. M. C. Lee et al., Abnormal phase flip in the coherent phonon oscillations of Ca2RuO4. Phys. Rev. B 98, 161115(R) (2018). https://doi.org/10.1103/PhysRevB.98.161115

    Article  ADS  Google Scholar 

  69. F. Boschini et al., Collapse of superconductivity in cuprates via ultrafast quenching of phase coherence. Nat. Mater. 17, 416 (2018). https://doi.org/10.1038/s41563-018-0045-1

    Article  ADS  Google Scholar 

  70. M. C. Lee et al., Evidence of structural evolution in Sr2RhO4 studied by time-resolved optical reflectivity spectroscopy. Phys. Rev. B 100, 235139 (2019). https://doi.org/10.1103/PhysRevB.100.235139

    Article  ADS  Google Scholar 

  71. M. C. Lee et al., Strong spin-phonon coupling unveiled by coherent phonon oscillations in Ca2RuO4. Phys. Rev. B 99, 144306 (2019). https://doi.org/10.1103/PhysRevB.99.144306

    Article  ADS  Google Scholar 

  72. I. Kwak et al., Ultrafast dynamics in the Lifshitz-type 5d pyrochlore antiferromagnet Cd2Os2O7. Phys. Rev. B 100, 144309 (2019). https://doi.org/10.1103/PhysRevB.100.144309

    Article  ADS  Google Scholar 

  73. I. Kwak et al., Rotation of reflectivity anisotropy due to uniaxial strain along [110]tetr in the electron-doped Fe-based superconductor Ba(Fe0.955Co0.045)2As2. Phys. Rev. B 101, 165136 (2020). https://doi.org/10.1103/PhysRevB.101.165136

    Article  ADS  Google Scholar 

  74. Y. Lee et al., Nematic fluctuations in optimally doped BaFe1.87Co0.13As2 observed in photoinduced reflectivity change. Phys. Status Solidi RRL 14, 1900584 (2020). https://doi.org/10.1002/pssr.201900584

    Article  Google Scholar 

  75. D. Fausti et al., Light-induced superconductivity in a stripe-ordered cuprate. Science 331, 189 (2011). https://doi.org/10.1126/science.1197294

    Article  ADS  Google Scholar 

  76. W. Hu et al., Optically enhanced coherent transport in YBa2Cu3O6.5 by ultrafast redistribution of interlayer coupling. Nat. Mater. 13, 705 (2014). https://doi.org/10.1038/Nmat3963

    Article  ADS  Google Scholar 

  77. S. Kaiser et al., Optically induced coherent transport far above TC in underdoped YBa2Cu3O6+δ. Phys. Rev. B 89, 184516 (2014). https://doi.org/10.1103/PhysRevB.89.184516

    Article  ADS  Google Scholar 

  78. C. R. Hunt et al., Dynamical decoherence of the light induced interlayer coupling in YBa2Cu3O6+δ. Phys. Rev. B 94, 224303 (2016). https://doi.org/10.1103/PhysRevB.94.224303

    Article  ADS  Google Scholar 

  79. B. Liu et al., Pump frequency resonances for light-induced incipient superconductivity in YBa2Cu3O6.5. Phys. Rev. X 10, 011053 (2020). https://doi.org/10.1103/PhysRevX.10.011053

    Article  ADS  Google Scholar 

  80. A. Rothwarf, B. N. Taylor, Measurement of recombination lifetimes in superconductors. Phys. Rev. Lett. 19, 27 (1967). https://doi.org/10.1103/PhysRevLett.19.27

    Article  ADS  Google Scholar 

  81. V. V. Kabanov, J. Demsar, D. Mihailovic, Kinetics of a superconductor excited with a femtosecond optical pulse. Phys. Rev. Lett. 95, 147002 (2005). https://doi.org/10.1103/PhysRevLett.95.147002

    Article  ADS  Google Scholar 

  82. E. E. M. Chia, J. X. Zhu, D. Talbayev, A. J. Taylor, Competing energy scales in high-temperature superconductors: ultrafast pump-probe studies. Phys. Status Solidi RRL 5, 1 (2011). https://doi.org/10.1002/pssr.201004371

    Article  Google Scholar 

  83. M. Beck et al., Energy-gap dynamics of superconducting NbN thin films studied by time-resolved terahertz spectroscopy. Phys. Rev. Lett. 107, 177007 (2011). https://doi.org/10.1103/PhysRevLett.107.177007

    Article  ADS  Google Scholar 

  84. J. Demsar et al., Pair-breaking and superconducting state recovery dynamics in MgB2. Phys. Rev. Lett. 91, 267002 (2003). https://doi.org/10.1103/PhysRevLett.91.267002

    Article  ADS  Google Scholar 

  85. N. Gedik et al., Single-quasiparticle stability and quasiparticle-pair decay in YBa2Cu3O6.5. Phys. Rev. B 70, 014504 (2004). https://doi.org/10.1103/PhysRevB.70.014504

    Article  ADS  Google Scholar 

  86. I. M. Vishik et al., Ultrafast dynamics in the presence of antiferromagnetic correlations in electron-doped cuprate La2-xCexCuO4±δ. Phys. Rev. B 95, 115125 (2017). https://doi.org/10.1103/PhysRevB.95.115125

    Article  ADS  Google Scholar 

  87. C. L. Smallwood et al., Time- and momentum-resolved gap dynamics in Bi2Sr2CaCu2O8+δ. Phys. Rev. B 89, 115126 (2014). https://doi.org/10.1103/PhysRevB.89.115126

    Article  ADS  Google Scholar 

  88. Z. Zhang et al., Photoinduced filling of near-nodal gap in Bi2Sr2CaCu2O8+δ. Phys. Rev. B 96, 064510 (2017). https://doi.org/10.1103/PhysRevB.96.064510

    Article  ADS  Google Scholar 

  89. R. Mankowsky et al., Nonlinear lattice dynamics as a basis for enhanced superconductivity in YBa2Cu3O6.5. Nature 516, 71 (2014). https://doi.org/10.1038/nature13875

    Article  ADS  Google Scholar 

  90. G. Chiriacò, A. J. Millis, I. L. Aleiner, Transient superconductivity without superconductivity. Phys. Rev. B 98, 220510(R) (2018). https://doi.org/10.1103/PhysRevB.98.220510

    Article  ADS  Google Scholar 

  91. G. Chiriacò, A. J. Millis, I. L. Aleiner, Negative absolute conductivity in photoexcited metals. Phys. Rev. B 101, 041105(R) (2020). https://doi.org/10.1103/PhysRevB.101.041105

    Article  ADS  Google Scholar 

  92. D. R. Smith, N. Kroll, Negative refractive index in left-handed materials. Phys. Rev. Lett. 85, 2933 (2000). https://doi.org/10.1103/PhysRevLett.85.2933

    Article  ADS  Google Scholar 

  93. N. I. Landy et al., Perfect metamaterial absorber. Phys. Rev. Lett. 100, 207402 (2008). https://doi.org/10.1103/PhysRevLett.100.207402

    Article  ADS  Google Scholar 

  94. N. Papasimakis et al., Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency. Appl. Phys. Lett. 94, 211902 (2009). https://doi.org/10.1063/1.3138868

    Article  ADS  Google Scholar 

  95. P. Tassin et al., Low-loss metamaterials based on classical electromagnetically induced transparency. Phys. Rev. Lett. 102, 053901 (2009). https://doi.org/10.1103/PhysRevLett.102.053901

    Article  ADS  Google Scholar 

  96. Y. M. Bahk, D. S. Kim, H. R. Park, Large-area metal gaps and their optical applications. Adv. Opt. Mater. 7, 1800426 (2019). https://doi.org/10.1002/adom.201800426

    Article  Google Scholar 

  97. J. Hong et al., Terahertz slot antenna devices fabricated on silver nanowire network films. Opt. Mater. Express 7, 1679 (2017). https://doi.org/10.1364/OME.7.001679

    Article  ADS  Google Scholar 

  98. H. T. Chen et al., Tuning the resonance in high-temperature superconducting terahertz metamaterials. Phys. Rev. Lett. 105, 247402 (2010). https://doi.org/10.1103/PhysRevLett.105.247402

    Article  ADS  Google Scholar 

  99. A. Pimenov, A. Loidl, P. Przyslupski, B. Dabrowski, Negative refraction in ferromagnet-superconductor superlattices. Phys. Rev. Lett. 95, 247009 (2005). https://doi.org/10.1103/PhysRevLett.95.247009

    Article  ADS  Google Scholar 

  100. C. G. Du, H. Y. Chen, S. Q. Li, Quantum left-handed metamaterial from superconducting quantum-interference devices. Phys. Rev. B 74, 113105 (2006). https://doi.org/10.1103/PhysRevB.74.113105

    Article  ADS  Google Scholar 

  101. N. Lazarides, G. P. Tsironis, rf superconducting quantum interference device metamaterials. Appl. Phys. Lett. 90, 163501 (2007). https://doi.org/10.1063/1.2722682

    Article  ADS  Google Scholar 

  102. H. T. Chen et al., A metamaterial solid-state terahertz phase modulator. Nat. Photonics 3, 148 (2009). https://doi.org/10.1038/Nphoton.2009.3

    Article  ADS  Google Scholar 

  103. A. L. Rakhmanov et al., Layered superconductors as negative-refractive-index metamaterials. Phys. Rev. B 81, 075101 (2010). https://doi.org/10.1103/PhysRevB.81.075101

    Article  ADS  Google Scholar 

  104. J. Q. Gu et al., Terahertz superconductor metamaterial. Appl. Phys. Lett. 97, 071102 (2010). https://doi.org/10.1063/1.3479909

    Article  ADS  Google Scholar 

  105. V. Savinov, K. Delfanazari, V. A. Fedotov, N. I. Zheludev, Giant nonlinearity in a superconducting sub-terahertz metamaterial. Appl. Phys. Lett. 108, 101107 (2016). https://doi.org/10.1063/1.4943649

    Article  ADS  Google Scholar 

  106. C. Zhang et al., Low-loss terahertz metamaterial from superconducting niobium nitride films. Opt. Express 20, 42 (2012). https://doi.org/10.1364/OE.20.000042

    Article  ADS  Google Scholar 

  107. B. Jin et al., Low loss and magnetic field-tunable superconducting terahertz metamaterial. Opt. Express 18, 17504 (2010). https://doi.org/10.1364/OE.18.017504

    Article  ADS  Google Scholar 

  108. J. Wu et al., Tuning of superconducting niobium nitride terahertz metamaterials. Opt. Express 19, 12021 (2011). https://doi.org/10.1364/OE.19.012021

    Article  ADS  Google Scholar 

  109. R. Singh et al., Influence of film thickness in THz active metamaterial devices: a comparison between superconductor and metal split-ring resonators. Appl. Phys. Lett. 103, 061117 (2013). https://doi.org/10.1063/1.4817814

    Article  ADS  Google Scholar 

  110. C. Zhang et al., Terahertz nonlinear superconducting metamaterials. Appl. Phys. Lett. 102, 081121 (2013). https://doi.org/10.1063/1.4794077

    Article  ADS  Google Scholar 

  111. N. K. Grady et al., Nonlinear high-temperature superconducting terahertz metamaterials. New J. Phys. 15, 105016 (2013). https://doi.org/10.1088/1367-2630/15/10/105016

    Article  ADS  Google Scholar 

  112. J. Wu et al., Extraordinary terahertz transmission in superconducting subwavelength hole array. Opt. Express 19, 1101 (2011). https://doi.org/10.1364/OE.19.001101

    Article  ADS  Google Scholar 

  113. V. A. Fedotov et al., Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. Phys. Rev. Lett. 99, 147401 (2007). https://doi.org/10.1103/PhysRevLett.99.147401

    Article  ADS  Google Scholar 

  114. J. Wu et al., Superconducting terahertz metamaterials mimicking electromagnetically induced transparency. Appl. Phys. Lett. 99, 161113 (2011). https://doi.org/10.1063/1.3653242

    Article  ADS  Google Scholar 

  115. C. Li et al., Electrical dynamic modulation of THz radiation based on superconducting metamaterials. Appl. Phys. Lett. 111, 092601 (2017). https://doi.org/10.1063/1.4997097

    Article  ADS  Google Scholar 

  116. Y. G. Jeong et al., A vanadium dioxide metamaterial disengaged from insulator-to metal transition. Nano Lett. 15, 6318 (2015). https://doi.org/10.1021/acs.nanolett.5b02361

    Article  ADS  Google Scholar 

  117. Y. G. Jeong et al., Electrical control of terahertz nano antennas on VO2 thin film. Opt. Express 19, 21211 (2011). https://doi.org/10.1364/Oe.19.021211

    Article  ADS  Google Scholar 

  118. N. I. Zheludev, The road ahead for metamaterials. Science 328, 582 (2010). https://doi.org/10.1126/science.1186756

    Article  ADS  Google Scholar 

  119. X. C. Tong, Functional metamaterials and metadevices (Springer, Cham, 2018)

    Book  Google Scholar 

  120. T. Driscoll et al., Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide. Appl. Phys. Lett. 93, 024101 (2008). https://doi.org/10.1063/1.2956675

    Article  ADS  Google Scholar 

  121. T. Driscoll et al., Memory metamaterials. Science 325, 1518 (2009). https://doi.org/10.1126/science.1176580

    Article  ADS  Google Scholar 

  122. G. Choi et al., Terahertz nanoprobing of semiconductor surface dynamics. Nano Lett. 17, 6397 (2017). https://doi.org/10.1021/acs.nanolett.7b03289

    Article  ADS  Google Scholar 

  123. G. Choi et al., Enhanced surface carrier response by field overlapping in metal nanopatterned semiconductor. ACS Photonics 5, 4739 (2018). https://doi.org/10.1021/acsphotonics.8b00724

    Article  Google Scholar 

  124. S. Choi et al., Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film. Appl. Phys. Lett. 98, 071105 (2011). https://doi.org/10.1063/1.3553504

    Article  ADS  Google Scholar 

  125. A. Hammar et al., Terahertz direct detection in YBa2Cu3O7 microbolometers. IEEE Trans. Terahertz Sci. Technol. 1, 390 (2011). https://doi.org/10.1109/TTHZ.2011.2161050

    Article  ADS  Google Scholar 

  126. V. Savinov, V. A. Fedotov, P. A. de Groot, N. I. Zheludev, Radiation-harvesting resonant superconducting sub-THz metamaterial bolometer. Supercond. Sci. Technol 26, 084001 (2013). https://doi.org/10.1088/0953-2048/26/8/084001

    Article  ADS  Google Scholar 

  127. S. Park, S. Cha, G. Shin, Y. Ahn, Sensing viruses using terahertz nano-gap metamaterials. Biomed. Opt. Express 8, 3551 (2017). https://doi.org/10.1364/BOE.8.003551

    Article  Google Scholar 

  128. H. S. Kim et al., Humidity sensing using THz metamaterial with silk protein fibroin. Opt. Express 26, 33575 (2018). https://doi.org/10.1364/OE.26.033575

    Article  ADS  Google Scholar 

  129. G.-H. Lee et al., Graphene-based Josephson junction microwave bolometer. Nature 586, 42 (2020). https://doi.org/10.1038/s41586-020-2752-4

    Article  ADS  Google Scholar 

  130. U. Welp, K. Kadowaki, R. Kleiner, Superconducting emitters of THz radiation. Nat. Photonics 7, 702 (2013). https://doi.org/10.1038/nphoton.2013.216

    Article  ADS  Google Scholar 

  131. K. Nakade et al., Applications using high-TC superconducting terahertz emitters. Sci. Rep. 6, 23178 (2016). https://doi.org/10.1038/srep23178

    Article  ADS  Google Scholar 

  132. D. Headland et al., Tutorial: Terahertz beamforming, from concepts to realizations. APL Photonics 3, 051101 (2018). https://doi.org/10.1063/1.5011063

    Article  ADS  Google Scholar 

  133. P. Yang, Y. Xiao, M. Xiao, S. Li, 6G wireless communications: Vision and potential techniques. IEEE Netw. 33, 70 (2019). https://doi.org/10.1109/MNET.2019.1800418

    Article  MathSciNet  Google Scholar 

  134. S. Dang, O. Amin, B. Shihada, M.-S. Alouini, What should 6G be? Nat. Electron. 3, 20 (2020). https://doi.org/10.1038/s41928-019-0355-6

    Article  Google Scholar 

  135. S. Lee et al., Metamaterials for enhanced optical responses and their application to active control of terahertz waves. Adv. Mater. 32, 2000250 (2020). https://doi.org/10.1002/adma.202000250

    Article  ADS  Google Scholar 

  136. S. H. Lee et al., Switching terahertz waves with gate-controlled active graphene metamaterials. Nat. Mater. 11, 936 (2012). https://doi.org/10.1038/nmat3433

    Article  ADS  Google Scholar 

  137. T.-T. Kim et al., Electrically tunable slow light using graphene metamaterials. ACS Photonics 5, 1800 (2018). https://doi.org/10.1021/acsphotonics.7b01551

    Article  Google Scholar 

  138. T. T. Kim et al., Amplitude modulation of anomalously refracted terahertz waves with gated-graphene metasurfaces. Adv. Opt. Mater. 6, 1700507 (2018). https://doi.org/10.1002/adom.201700507

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (NRF-2018R1D1A1A02048923, NRF-2021R1A2C1008452, NRF-2020R1A2C3013454 and NRF-2020R1A4A1019566), he Republic of Korea’s MSIT (Ministry of Science and ICT), under the High-Potential Individuals Global Training Program (Task No. 2021-0-01580) supervised by the IITP (Institute of Information and Communications Technology Planning & Evaluation), and the 2021 Research Fund (1.210060.01) of Ulsan National Institute of Science and Technology (UNIST).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kyungwan Kim or Hyeong-Ryeol Park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: Some references have been updated with missing volume and page numbers as well as revised the incorrect journal name.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, C., Kim, J., Eom, S. et al. Terahertz spectroscopy of high temperature superconductors and their photonic applications. J. Korean Phys. Soc. 81, 490–501 (2022). https://doi.org/10.1007/s40042-022-00403-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-022-00403-3

Keywords

Navigation