Skip to main content

Simulations of fusion edge plasmas by linear plasma devices: physics and plasma–material interactions

Abstract

Because a fusion edge plasma contains various atomic and molecular processes, along with various plasma–material interactions (PMIs) for post-mortem analyses, a linear plasma device can simulate divertor and scrape-off layer (SOL) plasmas with DC edge relevant parameters, although it cannot generate a high ion temperature and toroidicity with much less power density compared to toroidal devices. The Divertor Plasma Simulator-2 (DiPS-2), a linear device with an LaB6 DC cathode, has been used for a few fusion-relevant physics experiments, including edge localized mode (ELM) simulation and edge transport of diffusion and convection. An ELM simulation has been performed by modulating the magnetic field relevant to the pressure modulation of a toroidal device, and the diffusion coefficients of free and bound presheaths have been measured in simulations of divertor or limiter transport. Moreover, the convection of the filament or the bubble expansion to the first wall has also been analyzed. In addition to various atomic and molecular processes in SOL and divertor plasmas, PMIs must be analyzed both on and beneath the surface of the plasma-facing components (PFCs) because of surface modification. Using DiPS-2 and other linear devices along with Korea Superconducting Tokamak Advanced Research (KSTAR), PMIs have been analyzed in terms of the following elements or processes: (1) boronizations, both for dust interactions with the surface chamber (DiSC) and KSTAR device, are analyzed; (2) carbon damage by the dense heat flux of DiPS-2 is experimentally investigated; (3) the density profile of the lithium injection gettering of hydrogen and its transport experiments (LIGHT-1) device is analytically calculated; (4) the effect of nitrogen on the relaxation of the heat flux to the divertor tile is experimentally analyzed; and (5) tungsten as the divertor tile material is analyzed via laser ELM simulations in terms of dust generation and surface modification.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

References

  1. G. Federici et al., Nucl. Fusion 41, 1967 (2001)

    ADS  Article  Google Scholar 

  2. N. Asakura et al., Nucl. Fusion 44, 503 (2004)

    ADS  Article  Google Scholar 

  3. B. Lipschultz, D. Whyte, B. LaBombard, Plasma Phys. Control. Fusion 47, 1559 (2005)

    ADS  Article  Google Scholar 

  4. N. Smick, B. LaBombard, C. Pitcher, J. Nucl. Mater. 337–339, 281 (2005)

    ADS  Article  Google Scholar 

  5. J.P. Coad et al., Nucl. Fusion 46, 350 (2006)

    ADS  Article  Google Scholar 

  6. R.A. Pitts et al., Plasma Phys. Control. Fusion. 47, B303 (2005)

    Article  Google Scholar 

  7. B. Lipschultz et al., Nucl. Fusion 41, 585 (2001)

    ADS  Article  Google Scholar 

  8. J. Winter, Plasma Phys. Control. Fusion 46, B583 (2004)

    Article  Google Scholar 

  9. C. Voinier, C.H. Skinner, A.L. Roquemore, J. Nucl. Mater. 346, 266 (2005)

    ADS  Article  Google Scholar 

  10. F. L. Guern, et al., R&D on in-vessel dust and tritium management in ITER. in 2011 IEEE/NPSS 24th symposium on fusion engineering SP1–24, 1–5 (2011)

  11. R.A. Causey, J. Nucl. Mater. 300, 91 (2002)

    ADS  Article  Google Scholar 

  12. D.M. Goebel, Y. Hirooka, T.A. Sketchley, Rev. Sci. Instrum. 56, 1717 (1985)

    ADS  Article  Google Scholar 

  13. Y. Hirooka et al., J. Vac. Sci. Technol. A 8, 1790 (1990)

    ADS  Article  Google Scholar 

  14. N. Ohno et al., Nucl. Fusion 41, 1055 (2001)

    ADS  Article  Google Scholar 

  15. A. Kreter, Fusion Sci. Technol. 68, 8 (2015)

    Article  Google Scholar 

  16. G.D. Temmerman et al., Fusion Eng. Des. 88, 483 (2013)

    Article  Google Scholar 

  17. J. Rapp, et al., Nucl. Fusion 57 (2017)

  18. H. Liu et al., Fusion Eng. Des. 144, 81 (2019)

    Article  Google Scholar 

  19. K.-S. Chung et al., Fusion Sci. Technol. 63, 16 (2013)

    Article  Google Scholar 

  20. I.J. Kang et al., Curr. Appl. Phys. 17, 358 (2017)

    ADS  Article  Google Scholar 

  21. I.J. Kang et al., Plasma Sci. Technol. 22, 045601 (2020)

    ADS  Article  Google Scholar 

  22. R.A. Pitts et al., J. Nucl. Mater. 415, S957 (2011)

    Article  Google Scholar 

  23. K.-S. Chung, J. Korean Phys. Soc. 33, 54 (1998)

    Google Scholar 

  24. P.C. Stangeby, The plasma boundary of magnetic fusion devices (IOP Publishing Ltd, Bristol, 2000)

    Book  Google Scholar 

  25. M.-K. Bae et al., Nucl. Mater. Energy 12, 1259 (2017)

    Article  Google Scholar 

  26. J.G. Bak et al., Contrib. Plasma Phys. 53, 69 (2013)

    ADS  Article  Google Scholar 

  27. H.-S. Kim et al., Fusion Eng. Des. 109–111, 809 (2016)

    Article  Google Scholar 

  28. J.-H. Sun et al., J. Phys. Soc. 62, 612 (2013)

    Article  Google Scholar 

  29. S.-H. Hong et al., J. Nucl. Mater. 415, S1050 (2011)

    Article  Google Scholar 

  30. H.S. Kim et al., J. Kor. Phys. Soci. 61, 832 (2012)

    Article  Google Scholar 

  31. I.S. Park et al., Sci. Adv. Mater. 13, 2270 (2021)

    Article  Google Scholar 

  32. K.-S. Chung et al., Fusion Eng. Des. 119, 61 (2017)

    Article  Google Scholar 

  33. H. Tsuchiya et al., Fusion Eng. Des. 85, 847 (2010)

    Article  Google Scholar 

  34. S. Ciattaglia, Dust inventory control status in ITER Baseline provisions, R&D plan and first results, in 2nd RCM of IAEA Dust CRP (2010)

  35. J.W. Connor, Plasma Phys. Control. Fusion 40, 531 (1998)

    ADS  Article  Google Scholar 

  36. K.-S. Chung et al., Contrib. Plasma Phys. 46, 354 (2006)

    ADS  Article  Google Scholar 

  37. R.P. Doerner et al., J. Nucl. Mater. 290, 166 (2001)

    ADS  Article  Google Scholar 

  38. I.J. Kang et al., JINST 10, C12019 (2015)

    Article  Google Scholar 

  39. M. Shoji et al., Plasma Phys. Control. Fusion 43, 761 (2001)

    ADS  Article  Google Scholar 

  40. J.W. Coenen et al., J. Nucl. Mater. 415, S78 (2011)

    Article  Google Scholar 

  41. G. Pintsuk et al., Fusion Eng. Des. 82, 1720 (2007)

    Article  Google Scholar 

  42. J.W. Coenen et al., Nucl. Fusion 51, 083008 (2011)

    ADS  Article  Google Scholar 

  43. A. Huber et al., Phys. Scr. T159, 014005 (2014)

    ADS  Article  Google Scholar 

  44. R.A. Pitts et al., Nucl. Mater. Energy 12, 60 (2017)

    Article  Google Scholar 

  45. R.A. Pitts et al., Nucl. Mater. Energy 20, 100696 (2019)

    ADS  Article  Google Scholar 

  46. A.W. Leonard et al., J. Nucl. Mater. 266–269, 109 (1999)

    ADS  Article  Google Scholar 

  47. R.A. Pitts et al., J. Nucl. Mater. 390–391, 755 (2009)

    ADS  Article  Google Scholar 

  48. G.S. Yun et al., Phys. Rev. Lett. 107, 045004 (2011)

    ADS  Article  Google Scholar 

  49. A. Kirk et al., Plasma Phys. Control. Fusion 53, 035003 (2011)

    ADS  Article  Google Scholar 

  50. N. Asakura et al., J. Phys. Conf. Ser. 123, 012009 (2008)

    Article  Google Scholar 

  51. X.Q. Xu et al., Phys. Plasma 10, 1773 (2003)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National R&D Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (2019M1A7A1A03088471). This research was partially supported by R&D Program of “Plasma Convergence and Fundamental Research (1711124796)” through the Korea Institute of Fusion Energy (KFE) funded by the Government funds, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyu-Sun Chung.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kang, I.J., Bae, MK., Park, I.S. et al. Simulations of fusion edge plasmas by linear plasma devices: physics and plasma–material interactions. J. Korean Phys. Soc. 80, 717–734 (2022). https://doi.org/10.1007/s40042-022-00397-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-022-00397-y

Keywords

  • Linear plasma devices
  • DiPS-2
  • KSTAR
  • PMI (plasma–material interaction)
  • ELM (edge localized mode)
  • Diffusion
  • Convection