Skip to main content

Water adsorption on an In/Si(111) surface: effect on the phase transition

Abstract

We investigated effects of water adsorption on the structural phase transition between the 4 × 1 phase and the 8 × 2 phase of an In/Si(111) surface using low-energy energy diffraction. We found that water molecules adsorbed on a 4 × 1 surface at room temperature decreased the transition temperature, by suppressing the condensation of the 8 × 2 phase. This role of water adsorbate contrasts to the previous observation that the adsorbate on the aged surface at 20 K enhanced the formation of the 8 × 2 phase. On the other hand, the adsorption of water on the 8 × 2 surface at low temperature caused disorder on surface but did not revert the 8 × 2 phase to the 4 × 1 phase. This result differs from the case of In impurities that also suppress the 4 × 1 → 8 × 2 transition upon adsorption on the 4 × 1 phase and even revert the 8 × 2 to the 4 × 1 upon adsorption on the 8 × 2 phase.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. J. Kraft, M.G. Ramsey, F.P. Netzer, Phys. Rev. B 55, 5384 (1997)

    ADS  Article  Google Scholar 

  2. J. Nogami, S. Park, C.F. Quate, Phys. Rev. B 36, 6221 (1987)

    ADS  Article  Google Scholar 

  3. A.A. Saranin et al., Phys. Rev. B 60, 14372 (1999)

    ADS  Article  Google Scholar 

  4. H.W. Yeom et al., Phys. Rev. Lett. 82, 4898 (1999)

    ADS  Article  Google Scholar 

  5. G. Lee et al., Phys. Rev. B 67, 035327 (2003)

    ADS  Article  Google Scholar 

  6. T. Abukawa et al., Surf. Sci. 325, 33 (1995)

    ADS  Article  Google Scholar 

  7. I.G. Hill, A.B. McLean, Phys. Rev. B 56, 15725 (1997)

    ADS  Article  Google Scholar 

  8. O. Bunk et al., Phys. Rev. B 59, 12228 (1999)

    ADS  Article  Google Scholar 

  9. I.G. Hill, A.B. Mclean, Phys. Rev. B 59, 979 (1999)

    ADS  Google Scholar 

  10. T. Kanagawa et al., Phys. Rev. Lett. 91, 036805 (2003)

    ADS  Article  Google Scholar 

  11. S. Wippermann, W.G. Schmidt, Phys. Rev. Lett. 105, 126102 (2010)

    ADS  Article  Google Scholar 

  12. S. Kurata, T. Yokoyama, Phys. Rev. B 71, 121306(R) (2005)

    ADS  Article  Google Scholar 

  13. J.-H. Cho, D.H. Oh, K.S. Kim, L. Kleinman, Phys. Rev. B 64, 235302 (2001)

    ADS  Article  Google Scholar 

  14. C. González, J. Ortega, F. Flores, New J. Phys. 7, 100 (2005)

    ADS  Article  Google Scholar 

  15. C. González, F. Flores, J. Ortega, Phys. Rev. Lett. 96, 136101 (2006)

    ADS  Article  Google Scholar 

  16. H.J. Kim, J.-H. Cho, Phys. Rev. Lett. 110, 116801 (2013)

    ADS  Article  Google Scholar 

  17. F. Klasing et al., Phys. Rev. B 89, 121107(R) (2014)

    ADS  Article  Google Scholar 

  18. H. Shim, Y. Jeon, J. Yeo, G. Lee, New J. Phys. 17, 063026 (2015)

    ADS  Article  Google Scholar 

  19. S. Hatta, T. Noma, H. Okuyama, T. Aruga, Phys. Rev. B 95, 195409 (2017)

    ADS  Article  Google Scholar 

  20. S.V. Ryjkov, T. Nagao, V.G. Lifshits, S. Hasegawa, Surf. Sci. 488, 15 (2001)

    ADS  Article  Google Scholar 

  21. H. Shim et al., Appl. Phys. Lett. 94, 231901 (2009)

    ADS  Article  Google Scholar 

  22. H. Morikawa, C.-C. Hwang, H.-W. Yeom, Phys. Rev. B 81, 075401 (2010)

    ADS  Article  Google Scholar 

  23. W. Lee, H. Shim, G. Lee, J. Kor. Phys. Soc. 56, 943 (2010)

    ADS  Article  Google Scholar 

  24. S. Lee, J. Woo, G. Lee, J. Kor. Phys. Soc. 70, 740 (2017)

    ADS  Article  Google Scholar 

  25. G. Lee, S.-Y. Yu, H. Shim, W. Lee, J.-Y. Koo, Phys. Rev. B 80, 075411 (2009)

    ADS  Article  Google Scholar 

  26. T. Shibasaki et al., Phys. Rev. B 81, 031314 (2010)

    Article  Google Scholar 

  27. H. Shim, G. Lee, J.-M. Hyun, H. Kim, New J. Phys. 17, 093026 (2015)

    ADS  Article  Google Scholar 

  28. H.W. Yeom, D.M. Oh, S. Wippermann, W.G. Schmidt, ACS Nano 10, 810 (2016)

    Article  Google Scholar 

  29. S. Wall et al., Phys. Rev. Lett. 109, 186101 (2012)

    ADS  Article  Google Scholar 

  30. J. Yeo, H. Shim, G. Lee, J. Vac. Sci. Technol. A 31, 061402 (2013)

    Article  Google Scholar 

  31. K. Seino, W.G. Schmidt, F. Bechstedt, Phys. Rev. Lett. 93, 036101 (2004)

    ADS  Article  Google Scholar 

  32. H. Zhang et al., Phys. Rev. Lett. 113, 196802 (2014)

    ADS  Article  Google Scholar 

  33. Y. Terada et al., Nano Lett. 8, 3577 (2008)

    ADS  Article  Google Scholar 

  34. A.B. Harris, J. Phys. C 7, 1671 (1974)

    ADS  Article  Google Scholar 

  35. Y. Imry, M. Wortis, Phys. Rev. B 19, 3580 (1979)

    ADS  Article  Google Scholar 

  36. W.A. Roshen, Phys. Rev. B 31, 7296 (1985)

    ADS  Article  Google Scholar 

  37. I. Bldea, Phys. Scr. 42, 749 (1990)

    ADS  Article  Google Scholar 

  38. H. Shim, J. Yeo, G. Lee, H. Kim, Phys. Rev. Lett. 111, 149601 (2013)

    ADS  Article  Google Scholar 

  39. T. Frigge et al., Phys. Rev. Lett. 111, 149602 (2013)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Inha University Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geunseop Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jeon, Y., Shim, H. & Lee, G. Water adsorption on an In/Si(111) surface: effect on the phase transition. J. Korean Phys. Soc. 80, 320–324 (2022). https://doi.org/10.1007/s40042-021-00392-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00392-9

Keywords

  • Phase transition
  • In/Si(111)
  • Water adsorption
  • LEED