Skip to main content

Review of laser-plasma physics research and applications in Korea

Abstract

Laser plasmas can be produced when high-power laser beams are focused in matter. A focused laser beam of TW(terawatt)-level high power has an extremely strong electric field, so neutral atoms are immediately ionized by the laser electric field, leading to a laser-produced plasma. The laser plasma can be produced by small table-top TW lasers based on the CPA (chirped-pulse amplification) technique, and now they are rather easily available even in university laboratories. In Korea, there are several CPA-based TW (or even petawatt) lasers in a few institutions, and they have been used for diverse laser plasma physics research and applications, including the laser acceleration for electrons and ions, high-power THz (tera-hertz) generation, advanced light sources, high-energy-density plasmas, plasma optics, etc. This paper reviews some of the laser plasma physics research and applications that have been performed in several universities and research institutes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

source at PAL. a The 3D drawing shows the capillary, which is a one-body structure. The capillary has a hole diameter of 1 mm and 15 mm in length, and the overall size is 15 (wide) × 22 (height) × 20 (length) mm3. b Picture of the capillary with electrodes and gas feed lines installed on the PEEK base mount

Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

References

  1. S. Augst et al., JOSA B 8, 858 (1991)

    ADS  Article  Google Scholar 

  2. D. Strickland, G. Mourou, Opt. Commun. 55, 447 (1985)

    ADS  Article  Google Scholar 

  3. J.W. Yoon et al., Optica 8, 630 (2021)

    ADS  Article  Google Scholar 

  4. N. Hafz et al., Phys. Rev. E 73, 016405 (2006).

  5. I. Nam, Curr. Appl. Phys. 15, 468 (2015)

    ADS  Article  Google Scholar 

  6. T.J. Yu et al., Opt. Express 20, 10807 (2012)

    ADS  Article  Google Scholar 

  7. J.H. Sung et al., Opt. lett. 42, 2058 (2017)

    ADS  Article  Google Scholar 

  8. S.K. Lee, H.T. Kim, I.W. Choi, C.M. Kim, C.H. Nam, J. Korean Phys. Soc. 73, 179 (2018)

    ADS  Article  Google Scholar 

  9. E. Esarey, P. Sprangle, J. Krall, A. Ting, IEEE Trans. Plasma Sci. 24, 252 (1996)

    ADS  Article  Google Scholar 

  10. D. Umstadter, Phys. Plasmas 8, 1774 (2001)

    ADS  Article  Google Scholar 

  11. T. Tajima, J.M. Dawson, Phys. Rev. Lett. 43, 267 (1979)

    ADS  Article  Google Scholar 

  12. S.C. Wilks et al., Phys. Plasmas 8, 542 (2001)

    ADS  Article  Google Scholar 

  13. B. Qiao et al., Phys. Rev. Lett. 105, 155002 (2010)

    ADS  Article  Google Scholar 

  14. C. D’Amico et al., Phys. Rev. Lett. 98, 235002 (2007)

    ADS  Article  Google Scholar 

  15. V.M. Malkin, G. Shvets, N.J. Fisch, Phys. Rev. Lett. 82, 4448 (1999)

    ADS  Article  Google Scholar 

  16. S. Kneip et al., Nat. Phys. 6, 980 (2010)

    Article  Google Scholar 

  17. M.S. Kim et al., Appl. Phys. Lett. 102, 204103 (2013)

    ADS  Article  Google Scholar 

  18. J. Kim et al., Rev. Sci. Instrum. 92, 023511 (2021)

    ADS  Article  Google Scholar 

  19. T.D. Arber et al., Plasma Phys. Control. Fusion 57, 113001 (2015)

    ADS  Article  Google Scholar 

  20. I. Nam, Ph.D Thesis, GIST (2015).

  21. A. Modena et al., IEEE Trans. Plasma Sci. 24, 289 (1996)

    ADS  Article  Google Scholar 

  22. C. DesRosiers, V. Moskvin, A.F. Bielajew, L. Papiez, Phys. Med. Biol. 45, 1781 (2000)

    Article  Google Scholar 

  23. V. Malka, J. Faure, Y.A. Gaudeul, Mutat. Res. 704, 142 (2010)

    Article  Google Scholar 

  24. B. Palma et al., Radiother. Oncol. 119, 154 (2016)

    Article  Google Scholar 

  25. A. Subiel et al., Phys. Med. Biol. 59, 5811 (2014)

    Article  Google Scholar 

  26. T. Fuchs et al., Phys. Med. Biol. 54, 3315 (2009)

    ADS  Article  Google Scholar 

  27. A. Subiel et al., Phys. Med. 42, 327 (2017)

    Article  Google Scholar 

  28. J. Kim, Y.H. Hwangbo, K.N. Kim, Plasma Phys. Control. Fusion 60, 034008 (2018)

    ADS  Article  Google Scholar 

  29. J. Kim, Y. Hwangbo, W.-J. Ryu, K.N. Kim, S.H. Park, J. Instrum. 11, C03012 (2016)

    Article  Google Scholar 

  30. J. Jo et al., in Proceeding of FEL2015, 739 (Daejeon, Korea, 2015).

  31. S. H. Park et al., in Proceedings of SPIE - The International Society for Optical Engineering 8075, 33 (Prague, Czech Republic, 2011).

  32. S. H. Park et al., 6th International Particle Accelerator Conference, 2569 (2015).

  33. W. Wang et al., Nature 595, 516 (2021)

    ADS  Article  Google Scholar 

  34. C.A. Lindstrøm et al., Phys. Rev. Lett. 121, 194801 (2018)

    ADS  Article  Google Scholar 

  35. C. Joshi, V. Malka, New J. Phys. 12, 045003 (2010)

    ADS  Article  Google Scholar 

  36. ALEGRO collaboration, arXiv: 1901. 10370 v2 (2019).

  37. AWAKE collaboration, Nature 561, 363 (2018).

  38. Seong-Yeol Kim, Ph.D Thesis, UNIST (2021).

  39. S. Y. Kim et al., Nucl. Instrum. Methods Phys. Res. Section A 953, 163194 (2020).

  40. S.Y. Kim et al., Phys. Rev. Accel. Beams 24, 021301 (2021)

    ADS  Article  Google Scholar 

  41. K. J. Moon et al., 47th EPS Conference on Plasma Physics (2021).

  42. K.-J. Moon et al., Phys. Plasmas 26, 073103 (2019)

    ADS  Article  Google Scholar 

  43. Jimin Seok et al., in Proceedings of 18th Advanced Accelerator Concepts Workshop (2018).

  44. Seong-Yeol Kim et al., arXiv: 2104. 10288 (2021).

  45. R.A. Snavely et al., Phys. Rev. Lett. 85, 2945 (2000)

    ADS  Article  Google Scholar 

  46. W. Ken, D. Ledingham et al., Appl. Sci. 4, 402 (2014)

    Article  Google Scholar 

  47. J.C. Fernandez et al., Nucl. Fusion 54, 054006 (2014)

    ADS  Article  Google Scholar 

  48. V. Malka et al., Med. Phys. 31, 1587 (2004)

    Article  Google Scholar 

  49. A. Macchi, A Superintense Laser-Plasma Interaction Theory Primer, Springer (2013).

  50. L.O. Silva et al., Phys. Rev. Lett. 92, 015002 (2004)

    ADS  Article  Google Scholar 

  51. K. Lee et al., Phys. Rev. E 78, 056403 (2008)

    ADS  Article  Google Scholar 

  52. K. Lee et al., Phys. Plasmas 18, 013101 (2011)

    ADS  Article  Google Scholar 

  53. I.J. Kim et al., Phys. Plasmas 23, 070701 (2016)

    ADS  MathSciNet  Article  Google Scholar 

  54. A. Higginson et al., Nat. Commun. 9, 724 (2018)

    ADS  Article  Google Scholar 

  55. H. Schwoerer et al., Nature 439, 445 (2006)

    ADS  Article  Google Scholar 

  56. B.M. Hegelich et al., Nature 439, 441 (2006)

    ADS  Article  Google Scholar 

  57. S. Ter-Avetisyan et al., Phys. Rev. Lett. 93, 155006 (2004)

    ADS  Article  Google Scholar 

  58. D. Haberberger et al., Nat. Phys. 8, 95 (2012)

    Article  Google Scholar 

  59. P. Hilz et al., Nat. Comm. 9, 423 (2018)

    ADS  Article  Google Scholar 

  60. K.N. Kim et al., Phys. Plasmas 21, 043110 (2014)

    ADS  Article  Google Scholar 

  61. K.N. Kim et al., Phys. Plasmas 23, 033119 (2016)

    ADS  MathSciNet  Article  Google Scholar 

  62. M. Kumar et al., AIP Adv 9, 045304 (2019)

    ADS  Article  Google Scholar 

  63. National Research Council, Frontiers in High Energy Density Physics: The X-Games of Contemporary Science (Washington, DC, USA, 2003), pp. 1-176

  64. B.I. Cho, Appl. Sci. 9, 4812 (2019)

    Article  Google Scholar 

  65. Daligault and S. Gupta, Astrophys. J. 703, 994 (2009).

  66. S.H. Glenzer et al., Science 327, 1228 (2010)

    ADS  Article  Google Scholar 

  67. R.R. Gattass, E. Mazur, Nat. Photonics 2, 219 (2008)

    ADS  Article  Google Scholar 

  68. A. Vogel et al., Appl. Phys. B 81, 1015 (2005)

    ADS  Article  Google Scholar 

  69. R.W. Lee et al., Laser Part. Beams 20, 527 (2002)

    ADS  Article  Google Scholar 

  70. G. Kang and B. I. Cho, Curr. Appl. Phys. in press (https://doi.org/10.1016/j.cap.2021.05.006).

  71. C. Bostedt et al., Rev. Mod. Phys. 88, 015007 (2016)

    ADS  Article  Google Scholar 

  72. J.W. Lee et al., Nuclear Inst. Methods Phys. Res. A 895, 120–125 (2018)

    ADS  Article  Google Scholar 

  73. G. Kang et al., Nuclear Inst. Methods Phys. Res. A 922, 114–118 (2019)

    ADS  Article  Google Scholar 

  74. J.W. Lee et al., J. Synchrotron Radiat. 27, 953–958 (2020)

    Article  Google Scholar 

  75. B.I. Cho et al., PRL 106, 167601 (2011)

    ADS  Article  Google Scholar 

  76. K. Engelhorn et al., PRB 91, 214305 (2015)

    ADS  Article  Google Scholar 

  77. B.I. Cho et al., Sci. Rep. 6, 18843 (2016)

    ADS  Article  Google Scholar 

  78. A. Fernandez-Pañella et al., PRB 101, 184309 (2020)

    ADS  Article  Google Scholar 

  79. S.M. Vinko et al., Nature 482, 59 (2012)

    ADS  Article  Google Scholar 

  80. B.I. Cho et al., PRL 109, 245003 (2012)

    ADS  Article  Google Scholar 

  81. D.S. Rackstraw et al., PRL 114, 015003 (2015)

    ADS  Article  Google Scholar 

  82. B.I. Cho et al., PRL 119, 075002 (2017)

    ADS  Article  Google Scholar 

  83. H.-K. Chung et al., AIP Conference Proceedings 1811, 020001 (2017)

  84. M.S. Cho et al., Phys. Plasmas 25, 053301 (2018)

    ADS  Article  Google Scholar 

  85. W. Bang et al., Phys. Rev. E 88, 033108 (2013)

    ADS  Article  Google Scholar 

  86. W. Bang et al., Phys. Plasmas 20, 093104 (2013)

    ADS  Article  Google Scholar 

  87. T. Ditmire et al., Nature 398, 489 (1999)

    ADS  Article  Google Scholar 

  88. J. Zweiback et al., Phys. Rev. Lett. 84, 2634 (2000)

    ADS  Article  Google Scholar 

  89. W. Bang et al., Phys. Rev. E 87, 023106 (2013)

    ADS  Article  Google Scholar 

  90. W. Bang, Phys. Rev. E 92, 013102 (2015)

    ADS  Article  Google Scholar 

  91. W. Bang et al., Phys. Rev. Lett. 111, 055002 (2013)

    ADS  Article  Google Scholar 

  92. M. Barbui et al., Phys. Rev. Lett. 111, 082502 (2013)

    ADS  Article  Google Scholar 

  93. H. Hamster, A. Sullivan, S. Gordon, W. White, R.W. Falcone, Phys. Rev. Lett. 71, 2725 (1993)

    ADS  Article  Google Scholar 

  94. K.Y. Kim, A.J. Taylor, J.H. Glownia, G. Rodriguez, Nat. Photonics 2, 605 (2008)

    Article  Google Scholar 

  95. K. Kang, S. Lee, D. Jang, J. Kim, H. Suk, Plasma Phys. Control. Fusion 62, 125008 (2020)

    ADS  Article  Google Scholar 

  96. D. Jang, H.S. Uhm, D. Jang, M.S. Hur, H. Suk, Plasma Sources Sci. and Technol. 25, 065008 (2016)

    ADS  Article  Google Scholar 

  97. G. Shvets, N.J. Fisch, A. Pukhov, J. Meyer-ter-Vehn, Phys. Rev. Lett. 81, 4879 (1998)

    ADS  Article  Google Scholar 

  98. R.M.G.M. Trines et al., Nat. Phys. 7, 87 (2011)

    Article  Google Scholar 

  99. X. Yang et al., Sci. Rep. 5, 13333 (2015)

    ADS  Article  Google Scholar 

  100. G. Vieux et al., Sci. Rep. 7, 2399 (2017)

    ADS  Article  Google Scholar 

  101. M.S. Hur, G. Penn, J.S. Wurtele, R. Lindberg, Phys. Plasmas 11, 5204 (2004)

    ADS  Article  Google Scholar 

  102. M.S. Hur, R.R. Lindberg, A.E. Charman, J.S. Wurtele, H. Suk, Phys. Rev. Lett. 95, 115003 (2005)

    ADS  Article  Google Scholar 

  103. S. Yoffe et al., Phys. Rev. Res. 2, 013227 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors (H.S.) would like to give special thanks to Dongho Kim at ETRI for useful discussions related with their activities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Suk.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bang, W., Cho, B.I., Cho, M.H. et al. Review of laser-plasma physics research and applications in Korea. J. Korean Phys. Soc. 80, 698–716 (2022). https://doi.org/10.1007/s40042-021-00391-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00391-w

Keywords

  • Basic laser-plasma physics
  • Laser plasma accelerator
  • Radiation source
  • High-energy-density plasma
  • Plasma optics