Skip to main content

Terahertz emission from a plasma dipole oscillation

Abstract

We studied an unrevealed characteristic of radiation emission from a localized plasma oscillator (plasma dipole oscillation—PDO). PDO is a novel concept of generating terahertz emission from a laser plasma-based system. The electromagnetic field generated by a PDO embedded in a uniform plasma, instead of being cut off by the ambient plasma as expected by a common but misleading sense, propagates long distances to escape the plasma eventually. The PDO-THz, differently from other laser plasma-based THz sources, utilizes the collective behavior of the plasma (plasma oscillations) and, accordingly, produces a quasi-narrow-band emission, which can potentially be useful in THz-based accelerator or THz-pump and probe experiments. We verified the PDO mechanism by using realistic three-dimensional particle-in-cell simulations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. M. Tonouchi, Nat. Photonics 1, 97 (2007)

    ADS  Article  Google Scholar 

  2. P.U. Jepsen, D.G. Cooke, M. Koch, Laser Photon. Rev. 5, 124 (2011)

    ADS  Article  Google Scholar 

  3. X.C. Zhang, A. Shkurinov, Y. Zhang, Nat. Photonics 11, 16 (2017)

    ADS  Article  Google Scholar 

  4. K.A. Moldosanov, A.V. Postnikov, V.M. Lelevkin, N.J. Kairyev, Ferroelectrics 509, 158 (2017)

    Article  Google Scholar 

  5. S. Watanabe, Photonics 5, 58 (2018)

    Article  Google Scholar 

  6. M. Massaouti, C. Daskalaki, A. Gorodetsky, A.D. Loulouklidis, S. Tzortzakis, Appl. Spectroscopy 67, 1264 (2013)

    ADS  Article  Google Scholar 

  7. J.A. Zeitler, L.F. Gladden, Eur. J. Pharm. Biopharm. 71, 2 (2009)

    Article  Google Scholar 

  8. K. Tanaka, H. Hirori, M. Nagai, IEEE Trans. THz Sci. Technol. 1, 301 (2011)

    Article  Google Scholar 

  9. D. Grischkowsky, D.R. Grischkowsky, S.R. Kieding, M.P. van Exter, C. Fattinger, J. Opt. Soc. Am. B 7, 2006 (1990)

    ADS  Article  Google Scholar 

  10. K. Kawase, M. Nagai, K. Furukawa, M. Fujimoto, R. Kato, Y. Honda, G Isoyama, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 960, 163582 (2020)

  11. J. Fiekes, M.V. Hartrott, M. Ries, P. Schmid, G. Wustefeld, A. Hoehl, R. Klein, R. Muller, G. Ulm, Phys. Rev. Spec. Top. Acc. Beams 14, 030705 (2011)

    ADS  Article  Google Scholar 

  12. M. Thumm, J. Infrared Millim. Terahertz Waves 41, 1 (2020)

    Article  Google Scholar 

  13. T. Idehara, S.P. Sabchevski, M. Glyavin, S. Mitsudo, Appl. Sciences 10, 980 (2020)

    Article  Google Scholar 

  14. B. Liu, H. Bromberger, A. Cartella, T. Gebert, M. Först, A. Cavalleri, Opt. Lett. 42, 129 (2017)

    ADS  Article  Google Scholar 

  15. M. Carrillo-Fuentes, R.S. Cudney, S.H. Lee, O.P. Kwon, Opt. Express 28, 24444 (2020)

    ADS  Article  Google Scholar 

  16. C. Vicario, A. Trisorio, S. Allenspach, C. Rüegg, F. Giorgianni, Appl. Phys. Lett. 117, 101101 (2020)

    ADS  Article  Google Scholar 

  17. N.T. Yardimci, S.H. Yang, C.W. Berry, M. Jarrahi, IEEE Trans. THz Sci. Tech. 5, 233 (2015)

    Article  Google Scholar 

  18. E. Castro-Camus, M. Alfaro, Photonics Res. 4, A36 (2016)

    Article  Google Scholar 

  19. C. Vicario, A.V. Ovchinnikov, S.I. Ashitkov, M.B. Agranat, V.E. Fortov, C.P. Hauri, Opt. Lett. 39, 6632 (2014)

    ADS  Article  Google Scholar 

  20. W.R. Huang, S.W. Huang, E. Granados, K. Ravi, K.H. Hong, L.E. Zapata, F.X. Kartner, J. Mod. Opt. 62, 1486 (2015)

    ADS  Article  Google Scholar 

  21. N.M. Burford, M.O. El-Shenawee, Opt. Eng. 56, 010901 (2017)

    ADS  Article  Google Scholar 

  22. T. Loffler, H.G. Roskos, J. Appl. Phys. 91, 2611 (2002)

    ADS  Article  Google Scholar 

  23. M. Kreb, M., T. Loffler, M. Thomson, R. Dorner, H. Gimpel, K. Zrost, T. Ergler, R. Moshammer, U. Morgner, J. Ullrich and H. G. Roskos Nat. Phys. 2, 327 (2006)

  24. C. D’Amico, A. Houard, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, V.T. Tikhonchuk, Phys. Rev. Lett. 98, 235002 (2007)

    ADS  Article  Google Scholar 

  25. K.Y. Kim, A.J. Taylor, J.H. Glownia, G. Rodriguez, Nature Photon. 2, 605 (2008)

    Article  Google Scholar 

  26. T.I. Oh, Y.S. You, N. Jhajj, E.W. Rosenthal, H.M. Milchberg, K.Y. Kim, New J. Phys. 15, 075002 (2013)

    ADS  Article  Google Scholar 

  27. J. Dai, N. Karpowicz, X.C. Zhang, Phys. Rev. Lett. 103, 023001 (2009)

    ADS  Article  Google Scholar 

  28. H. Hamster, A. Sullivan, S. Gordon, W. White, R.W. Falcone, Phys. Rev. Lett. 71, 2725 (1993)

    ADS  Article  Google Scholar 

  29. Z.M. Sheng, K. Mima, J. Zhang, H. Sanuki, Phys. Rev. Lett. 94, 095003 (2005)

    ADS  Article  Google Scholar 

  30. W.M. Wang, P. Gibbon, Z.M. Sheng, Y.T. Li, Phys. Rev. Lett. 114, 253901 (2015)

    ADS  Article  Google Scholar 

  31. K.B. Kwon, T. Kang, H.S. Song, Y.K. Kim, B. Ersfeld, D.A. Jaroszynski, M.S. Hur, Sci. Rep. 8, 145 (2018)

    ADS  Article  Google Scholar 

  32. M.H. Cho, Y.K. Kim, H. Suk, B. Ersfeld, D.A. Jaroszynski, M.S. Hur, New J. Phys. 17, 043045 (2015)

    ADS  Article  Google Scholar 

  33. S. Kylychbekov , H. S. Song , K. B. Kwon1 , O. Ra1 , E. S. Yoon , M. Chung, K. Yu, S. R. Yoffe, B. Ersfeld, D. A. Jaroszynski and M. S. Hur, Plasma Sources Sci. Technol. 29, 025018 (2020)

  34. J. Yoshii, C.H. Lai, T. Katsouleas, C. Joshi, W.B. Mori, Phys. Rev. Lett. 7, 4194 (1997)

    ADS  Article  Google Scholar 

  35. M. Kumar KK, M. Kumar, T. Yuan, Z.M. Sheng, M. Chen, Laser Part. Beams 33, 473 (2015)

  36. M. Kumar, K. Lee, S.H. Park, Y.U. Jeong, N. Vinokurov, Phys. Plasmas 24, 033104 (2017)

    ADS  Article  Google Scholar 

  37. M. Kumar, T. Kang, S. Kylychbekov, H. S. Song, and M. S. Hur, Phys. Plasmas 28, 033101 (2021); M. Kumar and V. K. Tripathi, J. Phys. D: Appl. Phys. 46, 435501 (2013)

  38. A. Proulx, A. Talebpour, S. Petit, S.L. Chin, Opt. Comm. 174, 305 (2000)

    ADS  Article  Google Scholar 

  39. C.-C. Cheng, E.M. Wright, J.V. Moloney, Phys. Rev. Lett. 87, 213001 (2001)

    ADS  Article  Google Scholar 

  40. M.S. Hur, B. Ersfeld, A. Noble, H. Suk, D.A. Jaroszynski, Sci. Rep. 7, 40034 (2017)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This research work was supported by the National Research Foundation (NRF) of Korea (Grant Numbers NRF-2020R1A2C1102236).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Sup Hur or Manoj Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hur, M.S., Kumar, M., Song, H.S. et al. Terahertz emission from a plasma dipole oscillation. J. Korean Phys. Soc. 80, 852–858 (2022). https://doi.org/10.1007/s40042-021-00390-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00390-x

Keywords

  • Plasma
  • THz radiation
  • PIC simulation
  • Plasma dipole oscillation
  • Laser