Skip to main content

Hawking decay and thermodynamic transformation of a black hole: two examples

Abstract

The criterion for thermodynamic stability of rotating electrically charged quantum black holes was already derived by us. They appeared as a collection of inequalities connecting second-order derivatives of the black hole mass with respect to its horizon area, electric charge and angular momentum. We got similar results when this analysis was extended to black holes in arbitrary dimensional spacetime with any number of parameters that determine the mass of the black hole. Many black holes were shown to satisfy some of the stability criteria in certain regions of parameter space, but not all together. They are known as “Quasi Stable” black holes. Quasi stability restricts the accessibility of parameter space; hence, it creates bounds on various parameters of the quasi-stable black holes. They, although decaying under Hawking radiation, possess bounded fluctuations in certain regions of their accessibility for some of their parameters. We here consider Kerr–Newman and Kerr–Sen black holes as examples of two quasi-stable black holes. Their fluctuations are shown to be related to the bounds in parameter space. We also study the decay rate in various regions of their parameter spaces. We conclude that they transform to different kinds of black holes during their Hawking decay.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. R.M. Wald, General Relativity (The University of Chicago Press, Chicago, 1984)

    Book  Google Scholar 

  2. G.W. Gibbons, S.W. Hawking, Phys. Rev. D 15, 2738–51 (1977)

    ADS  MathSciNet  Article  Google Scholar 

  3. A.K. Sinha, P. Majumdar, Mod. Phys. Lett. A 32, 1750208 (2017)

    ADS  Article  Google Scholar 

  4. A.K. Sinha, Mod. Phys. Lett. A 33, 1850031 (2018)

    ADS  Article  Google Scholar 

  5. A.K. Sinha, Mod. Phys. Lett. A 33, 1850190 (2018)

    ADS  Article  Google Scholar 

  6. A.K. Sinha, Class. Quantum Gravity 36, 035003 (2019)

    ADS  Article  Google Scholar 

  7. A.K. Sinha, Mod. Phys. Lett. A 35, 2050136 (2020)

    ADS  Article  Google Scholar 

  8. P.C.W. Davis, Proc. R. Soc. A353, 499 (1977)

    ADS  Google Scholar 

  9. C. Rovelli, Quantum Gravity (Cambridge Monographs On Mathematical Physics, Cambridge University Press, 2004)

  10. T. Thiemann, Modern Canonical Quantum General Relativity (Cambridge Monographs On Mathematical Physics, Cambridge University Press, 2007)

  11. A. Majhi, P. Majumdar, Class. Quantum Gravit. 31, 19500 (2014)

    Google Scholar 

  12. R.K. Kaul, S.K. Rama, Phys. Rev. D 68, 024001 (2003)

    ADS  MathSciNet  Article  Google Scholar 

  13. E. Frodden, A. Perez, D. Pranzetti, C. Roken, Gen. Relativ. Gravit. 46, 1828 (2014)

    ADS  Article  Google Scholar 

  14. J.B. Achour, K. Noui, A. Perez, JHEP 1608, 149 (2016)

    ADS  Article  Google Scholar 

  15. A. Ashtekar, C. Beetle, J. Lewandowski, PRD 64, 044016 (2001)

    ADS  Article  Google Scholar 

  16. A. Chatterjee, A. Majumdar, Phys. Rev. Lett. 92, 141031 (2004)

    Google Scholar 

  17. L.D. Landau, E.M. Lifschitz, Statistical Physics (Pergamon Press, Oxford, 1980)

    Google Scholar 

  18. A.K. Sinha, Mod. Phys. Lett. A 35, 2050258 (2020)

    ADS  Article  Google Scholar 

  19. A.K. Sinha, Mod. Phys. Lett. A 36, 2150071 (2021)

    ADS  Article  Google Scholar 

  20. A.K. Sinha, Mod. Phys. Lett. A 36, 2150195 (2021)

    ADS  Article  Google Scholar 

  21. M.M. Caldarelli, G. Cognola, D. Klemm, Class. Quantum Gravit. 17, 399–420 (2000)

    ADS  Article  Google Scholar 

  22. A. Sen, Phys. Rev. Lett. 69, 1006–1009 (1992)

    ADS  MathSciNet  Article  Google Scholar 

  23. D.N. Page, Phys. Rev. D 14, 3260 (1976)

    ADS  Article  Google Scholar 

  24. C. Rovelli, F. Vidotto, Universe 4, 127 (2018)

    ADS  Article  Google Scholar 

  25. B. Carter, Phys. Rev. Lett. 33, 558 (1974)

    ADS  Article  Google Scholar 

  26. W.A. Hiscock, L.D. Weems, Phys. Rev. D 41, 1142 (1990)

    ADS  Article  Google Scholar 

  27. J. Louko, D. Marolf, Phys. Rev. D 59, 066002 (1999)

    ADS  MathSciNet  Article  Google Scholar 

  28. S. Hawking, C. Hunter, M. Robinson, Phys. Rev. D 59, 064005 (1999)

    ADS  MathSciNet  Article  Google Scholar 

  29. R. Emparan, J. High Energy Phys. JHEP 06, 036 (1999)

    ADS  Article  Google Scholar 

  30. A. Hebecker, J. Russell, Nucl. Phys. B 608, 375 (2001)

    ADS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aloke Kumar Sinha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sinha, A.K. Hawking decay and thermodynamic transformation of a black hole: two examples. J. Korean Phys. Soc. 80, 359–365 (2022). https://doi.org/10.1007/s40042-021-00387-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00387-6

Keywords

  • Black hole thermodynamics
  • Quasi-stability
  • Quantum black holes
  • Black hole transformation
  • Phase transition