Skip to main content

Synthesis of metal boride nanoparticles by using thermal plasmas

Abstract

Metal boride nanoparticles have very useful physical and chemical properties, such as high melting points, wear resistance, and chemical inertness, and they are receiving attention as functional materials such as a non-noble catalyst for water electrolysis. The synthesis of boride compounds, however, requires very high temperatures. Thermal plasmas can evaporate boron and metal raw materials in the high-temperature core region; then, the composite is produced in the form of a nanoparticle due to a steep temperature gradient in the tail region of the thermal plasma jet. Conventionally, a radio-frequency (RF) thermal plasma system is used to synthesize high purity nanoparticles, and the production of metal boride nanoparticles by using a triple- direct current (DC) thermal plasma system has been reported recently. The characteristics of metal boride nanoparticles, including the mean size and core–shell structure, are controlled by operating conditions such as the flow rate and the species of the plasma-forming gas. Research applications for the produced metal boride nanoparticles is developing in the fields of novel soft material for nuclear radiation shielding and water-splitting catalyst for hydrogen production.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Reprinted with permission from Choi et al., Adv. Powder Technol. 25, 365 (2014). Copyright 2014 Elsevier B.V.

Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. T. Lundstrom, Pure Appl. Chem. 57, 1383 (1985)

    Article  Google Scholar 

  2. J.P. Scheifers, Y. Zhang, B.P.T. Fokwa, Acc. Chem. Res. 50, 2317 (2017)

    Article  Google Scholar 

  3. A.K. Iyer, Y. Zhang, J.P. Scheifers, B.P.T. Fokwa, J. Solid State Chem. 270, 618 (2018)

    ADS  Article  Google Scholar 

  4. B. Bakhit et al., Acta Mater. 196, 677 (2020)

    ADS  Article  Google Scholar 

  5. A.N. Arpita-Aparajita et al., Mater. Res. Express 4, 096508 (2017)

    ADS  Article  Google Scholar 

  6. E. Wuchina et al., Electrochem. Soc. Interface 16, 30 (2007)

    Article  Google Scholar 

  7. C. Buzea, T. Yamashita, Supercond. Sci. Technol. 14, R115 (2001)

    ADS  Article  Google Scholar 

  8. R.W. Cumberland et al., J. Am. Chem. Soc. 127, 7264 (2005)

    Article  Google Scholar 

  9. S. Chiodo, H.J. Gotsis, N. Russo, E. Sicilia, Chem. Phys. Lett. 425, 311 (2006)

    ADS  Article  Google Scholar 

  10. X. Hao et al., Phy. Rev. B 74, 224112 (2006)

    ADS  Article  Google Scholar 

  11. S. Gupta, M.K. Patel, A. Miotello, N. Patel, Adv. Funct. Mater. 30, 1906481 (2020)

    Article  Google Scholar 

  12. H. Vrubel, X. Hu, Angew. Chemie Int. Ed. 51, 12703 (2012)

    Article  Google Scholar 

  13. S. Gupta, N. Patel, A. Miotello, D.C. Kothari, J. Power Sources 279, 620 (2015)

    ADS  Article  Google Scholar 

  14. H.R. Baumgartner, R.A. Steiger, J. Am. Ceram. Soc. 67, 207 (1984)

    Article  Google Scholar 

  15. K.S. Kim, T.H. Kim, J. Appl. Phys. 125, 070901 (2019)

    ADS  Article  Google Scholar 

  16. T.H. Kim et al., Appl. Sci. Converg. Technol. 29, 1 (2020)

    Article  Google Scholar 

  17. M.I. Boulos, IEEE Trans. Plasma Sci. 19, 1078 (1991)

    ADS  Article  Google Scholar 

  18. P. Fauchais, A. Vardelle, IEEE Trans. Plasma Sci. 25, 1258 (1997)

    ADS  Article  Google Scholar 

  19. J. Heberlein, A.B. Murphy, J. Phys. D. Appl. Phys. 41, 053001 (2008)

    ADS  Article  Google Scholar 

  20. E. Pfender, Plasma Chem. Plasma Process. 19, 1 (1999)

    Article  Google Scholar 

  21. M. Shigeta, T. Watanabe, H. Nishiyama, Thin Solid Films 457, 192 (2004)

    ADS  Article  Google Scholar 

  22. M. Shigeta, H. Nishiyama, J. Heat Transfer. 127, 1222 (2005)

    Article  Google Scholar 

  23. J.H. Oh et al., Curr. Appl. Phys. 31, 151 (2021)

    ADS  Article  Google Scholar 

  24. K.D. Kang, S.H. Hong, IEEE Trans. Plasma Sci. 24, 89 (1996)

    ADS  Article  Google Scholar 

  25. M.I. Boulos, P. Fauchais, E. Pfender, Thermal plasmas: fundamentals and applications (Plenum Press, New York and London, 1994)

    Book  Google Scholar 

  26. Z.P. Lu, E. Pfender, MRS Proc. 180, 857 (1990)

    Article  Google Scholar 

  27. J.M. Park, K.S. Kim, T.H. Hwang, S.H. Hong, IEEE Trans. Plasma Sci. 32, 479 (2004)

    ADS  Article  Google Scholar 

  28. Z.P. Lu et al., MRS Proc. 190, 77 (1990)

    Article  Google Scholar 

  29. Z.P. Lu et al., Plasma Chem. Plasma Process. 11, 387 (1991)

    Article  Google Scholar 

  30. M. Asmann, R.F. Cook, J.V. Heberlein, E. Pfender, J. Mater. Res. 16, 469 (2001)

    ADS  Article  Google Scholar 

  31. M. Kim et al., Chem. Eng. J. 395, 125148 (2020)

    Article  Google Scholar 

  32. T.H. Kim et al., IEEE Trans. Plasma Sci. 47, 1 (2019)

    Article  Google Scholar 

  33. M. Kim et al., J. Nanosci. Nanotechnol. 19, 6264 (2019)

    Article  Google Scholar 

  34. J.H. Oh et al., Ceram. Int. 46, 28792 (2020)

    Article  Google Scholar 

  35. Y. Cheng, T. Watanabe, J. Chem. Eng. Jpn. 44, 583 (2011)

    Article  Google Scholar 

  36. Y. Cheng, M. Shigeta, S. Choi, T. Watanabe, Chem. Eng. J. 183, 483 (2012)

    Article  Google Scholar 

  37. A.M. Keszler et al., Plasma Chem. Plasma Process. 37, 1491 (2017)

    Article  Google Scholar 

  38. S. Choi, J. Matsuo, Y. Cheng, T. Watanabe, J. Nanoparticle Res. 15, 1820 (2013)

    ADS  Article  Google Scholar 

  39. S. Choi, J. Matsuo, T. Watanabe, J. Phys. Conf. Ser. 441, 012030 (2013)

    Article  Google Scholar 

  40. Y. Cheng, S. Choi, T. Watanabe, J. Phys. Conf. Ser. 441, 112031 (2013)

    Article  Google Scholar 

  41. Y. Cheng, S. Choi, T. Watanabe, Powder Technol. 246, 210 (2013)

    Article  Google Scholar 

  42. S. Choi, L.D.S. Lapitan, Y. Cheng, T. Watanabe, Adv. Powder Technol. 25, 365 (2014)

    Article  Google Scholar 

  43. Y. Cheng, M. Tanaka, T. Watanabe, S.Y. Choi, M.S. Shin, K.H. Lee, J. Phys. Conf. Ser. 518, 012026 (2014)

    Article  Google Scholar 

  44. M. Shigeta, T. Watanabe, Thin Solid Films 515, 4217 (2007)

    ADS  Article  Google Scholar 

  45. T.H. Kim, S. Choi, D.W. Park, Nanomaterials 6, 38 (2016)

    Article  Google Scholar 

  46. S.H. Gwon et al., Sci. Rep. 8, 1852 (2018)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the 2021 scientific promotion program funded by Jeju National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sooseok Choi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oh, JH., Choi, S. & Kim, TH. Synthesis of metal boride nanoparticles by using thermal plasmas. J. Korean Phys. Soc. 80, 808–816 (2022). https://doi.org/10.1007/s40042-021-00385-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00385-8

Keywords

  • Thermal plasma
  • Plasma torch
  • Nanoparticle
  • Metal boride