Skip to main content

Feedforward compensation for hysteresis and dynamic behaviors of a high-speed atomic force microscope scanner


Piezoelectric actuators (PEAs) suffer from inherent creep, hysteresis, and mechanical resonances, and these phenomena have different characteristics. Creep is a low-speed phenomenon. Mechanical resonances are felt at high speeds while hysteresis is present for all speeds of operation. Some type of compensation for the weaknesses of PEAs is required to improve the tracking accuracy using PEA-based nano-positioning scanners. This work presents a feedforward compensation method for a high-speed atomic force microscope (HS-AFM) XY-scanner to mitigate the combined effects of hysteresis and scanner dynamics. Hysteresis is compensated for using an inverse Bouc-Wen (BW) model while the system dynamics are compensated for using the inverse models of the frequency response of the scanner. Cross-coupling effects at high frequencies are compensated for using low-pass filters (LPFs) to attenuate the high-frequency components of the drive signals. The compensated scanner is then used to acquire images of data tracks of a Blu-ray disk to demonstrate the efficacy of the adopted approach. The bandwidth of the scanner is limited by the choice of the LPF and the first occurrence of the scanner’s mechanical resonance.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14


  1. H. Jung, D.-G. Gweon, Rev. Sci. Instrum. 71, 1896 (2000)

    ADS  Article  Google Scholar 

  2. D. Croft, G. Shed, S. Devasia, J. Dyn. Syst. Meas. Control 123, 35 (2001)

    Article  Google Scholar 

  3. K.K. Leang, S. Devasia, Proceedings of the 2nd IFAC Conference on Mechatronic Systems (Elsevier, Berkeley, California, 2002), p. 263

  4. D. Croft, S. Devasia, Rev. Sci. Instrum. 70, 4600 (1999)

    ADS  Article  Google Scholar 

  5. G. Schitter, R. Stark, A. Stemmer, Ultramicroscopy 100, 253 (2004)

    Article  Google Scholar 

  6. S. Tien, Qingze Zou, S. Devasia, IEEE Trans. Control Syst. Technol. 13, 921 (2005)

    Article  Google Scholar 

  7. N. Chuang, I.R. Petersen, H.R. Pota, Asian J. Control 15, 872 (2013)

    MathSciNet  Article  Google Scholar 

  8. Y. Tian, Y. Ma, K. Lu, M. Yang, X. Zhao, F. Wang, D. Zhang, Rev. Sci. Instrum. 90, 105007 (2019)

    ADS  Article  Google Scholar 

  9. K.K. Leang, Q. Zou, S. Devasia, I.E.E.E. Contr, Syst. Mag. 29, 70 (2009)

    Google Scholar 

  10. Y. Jian, D. Huang, J. Liu, D. Min, IEEE Trans. Ind. Electron. 66, 368 (2019)

    Article  Google Scholar 

  11. L. Tian, Z. Xiong, J. Wu, H. Ding, Smart Mater. Struct. 26, 055008 (2017)

    ADS  Article  Google Scholar 

  12. J. Gan, X. Zhang, AIP Adv. 9, 040702 (2019)

    ADS  Article  Google Scholar 

  13. M.S. Rana, H.R. Pota, I.R. Petersen, IEEE Trans. Autom. Sci. Eng. 14, 1265 (2017)

    Article  Google Scholar 

  14. L. Tian, Z. Xiong, J. Wu, H. Ding, Smart Mater. Struct. 25, 095046 (2016)

    ADS  Article  Google Scholar 

  15. L.Y. Pao, J.A. Butterworth, D.Y. Abramovitch, 2007 American Control Conference (IEEE, New York, 2007), p. 3509

  16. Y.K. Yong, S.S. Aphale, S.O.R. Moheimani, IEEE Trans. Nanotechnol. 8, 46 (2009)

    ADS  Article  Google Scholar 

  17. R. Merry, M. Uyanik, R. van de Molengraft, R. Koops, M. van Veghel, M. Steinbuch, Asian J. Control 11, 130 (2009)

    Article  Google Scholar 

  18. Y. Wu, J. Shi, C. Su, Q. Zou, Rev. Sci. Instrum. 80, 043709 (2009)

    ADS  Article  Google Scholar 

  19. M. Rakotondrabe, A.G. Fowler, S.O.R. Moheimani, IEEE Trans. Control Syst. Technol. 22, 1486 (2014)

    Article  Google Scholar 

  20. M.S. Rana, H.R. Pota, I.R. Petersen, H. Habibullah, Asian J. Control 17, 747 (2015)

    MathSciNet  Article  Google Scholar 

  21. M. Yasuda, T. Osaka, M. Ikeda, Proceedings of 35th IEEE Conference on Decision and Control (IEEE, Kobe, 1996), p. 1229

  22. D.J. Burns, K. Youcef-Toumi, G.E. Fantner, Nanotechnology 22, 315701 (2011)

    ADS  Article  Google Scholar 

  23. W. Zhu, D. Hua Wang, Sens. Actuator A Phys. 181, 51 (2012)

    Article  Google Scholar 

  24. G. Wang, G. Chen, F. Bai, Sens. Actuator A Phys. 235, 105 (2015)

    Article  Google Scholar 

  25. M. Ming, Z. Feng, J. Ling, X.-H. Xiao, Micro. Nano Lett. 13, 1170 (2018)

    Article  Google Scholar 

  26. N.N. Son, C. Van Kien, H.P.H. Anh, Eng. Appl. Artif. Intell. 87, 103317 (2020)

    Article  Google Scholar 

  27. E. Bristol, IEEE Trans. Automat. Control 11, 133 (1966)

    Article  Google Scholar 

  28. J. Butterworth, L. Pao, D. Abramovitch, Mechatronics 22, 577 (2012)

    Article  Google Scholar 

  29. A.J. Fleming, K.K. Leang, Design, Modeling and Control of Nanopositioning Systems (Springer, London, 2014)

    Book  Google Scholar 

  30. A.J. Fleming, Rev. Sci. Instrum. 80, 104701 (2009)

    ADS  Article  Google Scholar 

Download references


This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2021R1I1A3056881).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Yong Joong Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Otieno, L.O., Nguyen, T.T., Park, S.J. et al. Feedforward compensation for hysteresis and dynamic behaviors of a high-speed atomic force microscope scanner. J. Korean Phys. Soc. 80, 325–336 (2022).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Atomic force microscope
  • High-speed atomic force microscope
  • Feedforward compensation