Skip to main content

Development of plasma sources and diagnostics for the simulation of fusion edge plasmas

Abstract

Although the research on divertors and scrape-off layers (SOLs) has been not as focused on as the recent success of the Korean fusion program, a few linear plasma devices have been developed for simulating divertor and SOL plasmas: (1) diversified plasma simulator (DiPS), a versatile linear machine, has been developed for simulations of divertor and space plasmas with various electric probes, such as single, triple, and Mach Probes and gridded energy analyzer. DiPS consists of two major parts: a divertor plasma simulator with a \(\hbox {LaB}_6\) DC plasma source and a space plasma simulator with a helicon RF plasma source, (2) divertor plasma simulator-1 (DiPS-1) is a part of DiPS with only a \(\hbox {LaB}_6\) cathode, where a low-power laser-induced fluorescence (LIF) is added and more electric probe diagnostics are augmented; it is dedicated only for fusion edge and divertor plasmas, (3) Divertor Plasma Simulator-2 (DiPS-2) has been modified from the DiPS-1 by adding a magnetic nozzle with a limiter structure and by removing the helicon source and space chamber. DiPS-2 is a linear plasma device with a 4-inch \(\hbox {LaB}_6\) cathode, the same as DiPS-1, and it is focused on the development of various diagnostics, such as those used for LIF and laser Thomson scattering (LTS) along with various electric probes, on the divertor and scrape-off plasmas and on the plasma-material interaction (PMI) research, such as that of tungsten and graphite as plasma-facing components (PFCs), (4) A Multi-Purpose Plasma (\(\hbox {MP}^2\)) device is a renovation of the Hanbit mirror device [Kwon et al., Nucl. Fusion 43, 686 (2003)] with the installation of two plasma sources: \(\hbox {LaB}_6\) (DC) and helicon (RF) plasma sources. A honeycomb-like large-area \(\hbox {LaB}_6\) (HLA-\(\hbox {LaB}_6\)) cathode has been developed for the divertor plasma simulation to improve the resistance against the thermal shock fragility for large (8-inch) and high density plasma generation, (5) DiPS-2 has been augmented by adding another cylindrical device, called the Dust interaction with Surfaces Chamber (DiSC) for the generation and diagnostics of dusts. This combined system (DiPS-2+DiSC) has added two more diagnostics: Laser Photo-Detachment (LPD) for dust density and laser Mie Scattering (LMS) for dust size. Moreover, dusts or negative ions have been analyzed by using electric probes and capacitive diagram gauges in Transport and Removal of Dusts (TReD) device.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

References

  1. G. Federici, C.H. Skinner, J.N. Brooks, J.P. Coad, C. Grisolia, A.A. Haasz, A. Hassanein, V. Philipps, C.S. Pitcher, J. Roth, W.R. Wampler, W.G. Whyte, Nucl. Fusion 41, 1967 (2001)

    Article  ADS  Google Scholar 

  2. G. Federici, A. Andrew, P. Barabaschi, J. Brooks, R. Doener, A. Geier, A. Herrmann, G. Janeschitz, K. Krieger, A. Kukushkin, A. Loarte, R. Neu, G. Saibene, M. Shimada, G. Strohmayer, M. Sugihara, J. Nucl. Mater. 11, 313–316 (2003)

    Google Scholar 

  3. N. Asakura, H. Takenaga, S. Sakurai, G.D. Porter, T.D. Rognlien, M.E. Rensink, K. Shimizu, S. Higashijima, H. Kubo, Nucl. Fusion 44, 503 (2004)

    Article  ADS  Google Scholar 

  4. B. Lipschultz, D. Whyte, B. LaBombard, Plasma Phys. Control. Fusion 47, 1559 (2005)

    Article  ADS  Google Scholar 

  5. N. Smick, B. LaBombard, C. Pitcher, J. Nucl. Mater. 281, 337–339 (2005)

    Google Scholar 

  6. J.P. Coad, N. Bekris, J.D. Elder, S.K. Erents, D.E. Hole, K.D. Lawson, G.F. Matthews, R.D. Penzhorn, P.C. Stangeby, J. Nucl. Mater. 224, 290–293 (2001)

    Google Scholar 

  7. R. A. Pitts, J. P. Coad, D. P. Coster, G. Federici, W. Fundamenski, J. Horacek, K. Krieger, A. Kukushkin, J. Likonen, G. F. Matthews, M. Rubel, J. D. Strachan, Plasma Phys. Control. Fusion. JET-EFDA contrib. 47, B303 (2005)

    Article  Google Scholar 

  8. B. Lipschultz, D.A. Pappas, B. LaBombard, J.E. Rice, D. Smith, S.J. Wukitch, Nucl. Fusion 41, 585 (2001)

    Article  ADS  Google Scholar 

  9. R.A. Causey, J. Nucl. Mater. 300, 91 (2002)

    Article  ADS  Google Scholar 

  10. J. Winter, Plasma Phys. Control. Fusion 46, B583 (2004)

    Article  Google Scholar 

  11. C. Voinier, C.H. Skinner, A.L. Roquemore, J. Nulc. Mater. 346, 266 (2005)

    Article  ADS  Google Scholar 

  12. F. Le Guern, S. Ciattaglia, G. Counsell, J. Kim, M. Walsh, A. Denkevitz, N. Endstrasser, H. Exenberger, E. Gauthier, T. Jordan. L. Kammerloher, M. Kuznetsov, R. Neu, R. Redlinger, B. Reiter, V. Rohde, Z. Xu, R&D on in-vessel dust and tritium management in ITER. 2011 IEEE/NPSS 24th Symposium on Fusion Engineering, June 26-30, SP1-24, IEEE Conference Publications (2011)

  13. D.M. Goebel, G. Campbell, R.W. Conn, J. Nucl. Mater. 121, 277 (1984)

    Article  ADS  Google Scholar 

  14. Y. Hirooka, R.W. Conn, T. Sketchley, W.K. Leung, G. Chevaller, R. Doerner, J. Elverum, D.M. Goebel, G. Gunner, M. Khandagle, B. Labombard, R. Lehmer, P. Luong, Y. Ra, L. Schmitz, G. Tynan, J. Vac. Sci. Technol. A 8, 1790 (1990)

    Article  ADS  Google Scholar 

  15. M. Shimada, R.D. Kolasinski, J.P. Sharpe, R.A. Causey, Rev. Sci. Instrum. 82, 083503 (2011)

    Article  ADS  Google Scholar 

  16. G.M. Wright, D.G. White, B. Lipshultz, J. Nucl. Mater. 390–391, 544 (2009)

    Article  ADS  Google Scholar 

  17. J. Rapp, Fusion Sci. Technol. 72, 211 (2017)

    Google Scholar 

  18. H. Meyer, S. Klose, G. Fussmann, Phys. Rev. E 61, 4347 (2000)

    Article  ADS  Google Scholar 

  19. B. de Groot, R. S. Al, R. Engeln, W. J. Goedheer, O. G. Kruijt, H. J. v. D. Meiden, P. R. Prins, D. C. Schram, P. H. M. Smeets, V. P. Veremiyenko, W. A. J. Vijver, J. Westerhout, A. W. Kleyn, N. J. Lopes Cardozo, G. J. van Rooij, Fusion Eng. Des. 82, 1861 (2007)

  20. J. Rapp, W. R. Koppers, H. J. N. van Eck, G. J. van Rooij, W. J. Goedheer, B. de Groot, R. Al, M. F. Graswinckel, M. A. van den Berg, O. Kruyt, P. Smeets, H. J. van der Meiden, W. Vijvers, J. Scholten, M. van de Pol, S. Brons, W. Melissen, T. van der Grift, R. Koch, B. Schweer, U. Samm, V. Philipps, R. A. H. Engeln, D. C. Schram, N. J. Lopes Cardozo, A. W. Kleyn, Fusion Eng. Des. 85, 1455 (2010)

  21. G. De Temmerman, M.A. van den Berg, J. Scholten, A. Lof, H.J. van der Meiden, H.J.N. van Eck, T.W. Morgan, T.M. de Kruijf, P.A. Zeijlmans van Emmichoven, J.J. ZielinskiFOM, Fusion Eng. Des. 88, 483 (2013)

    Article  Google Scholar 

  22. M.G. Rusbridge, G. Sewell, H. Qaosim, D.A. Forder, M. Kay, A. Randewich, A. Mirarefin, P.K. Borwning, K.J. Gibson, J. Hugill, Plasma Phys. Control. Fusion 42, 579 (2000)

    Article  ADS  Google Scholar 

  23. L. Laguardia, R. Caniello, A. Cremona, D. Dellasega, F. Dell’Era, F. Ghezzi, G. Gittini, G. Granucci, V. Mellera, D. Minelli, F. Pallotta, M. Passoni, D. Ricci, E. Vassallo, J. Nucl. Mater. 463, 680 (2015)

    Article  ADS  Google Scholar 

  24. A.M. Litnovsky, B.I. Khripunov, G.V. Sholin, V.B. Petrov, V.V. Shapkin, N.V. Antonov, J. Nucl. Mater. 1107, 290–293 (2015)

    Google Scholar 

  25. Y. Nakashima, M. Sakamoto, H. Takeda, K. Ichimura, Y. Hosoda, M. Iwamoto, K. Shimizu, K. Hosoi, K. Oki, M. Yoshikawa, M. Hirata, R. Ikezoe, T. Imai, T. Kariya, I. Katanuma, J. Kohagura, R. Minami, T. Numakura, X. Wang, M. Ichimura, Fusion Sci. Technol. 68, 28 (2015)

    Article  Google Scholar 

  26. S. Kajita, S. Kado, N. Uchida, T. Shikama, S. Tanaka, J. Nucl. Mater. 748, 313–316 (2003)

    Google Scholar 

  27. N. Ohno, D. Nishijima, S. Takamura, Y. Uesugi, M. Motoyama, N. Hattori, H. Arakawa, N. Ezumi, S. Krasheninnikov, A. Pigarov, U. Wenzel, Nucl. Fusion 41, 1055 (2001)

    Article  ADS  Google Scholar 

  28. S. Kajita, N. Ohno, T. Akiyama, T. Nihashi, T. Uchiyama, M. Osaka, Y. Kikuchi, M. Nagata, J. Nucl. Mater. 438, S707 (2013)

    Article  ADS  Google Scholar 

  29. T. Kaneko, N. Ohno, Y. Nakamura, M. Yamagiwa, N. Matsunami, S. Kajita, M. Takagi, Plasma Fusion Res. 10, 1402009 (2015)

    Article  ADS  Google Scholar 

  30. A. Tonegawa, M. Ono, Y. Morihira, H. Ogawa, T. Shibuya, K. Kawamura, K. Takayama, J. Nucl. Mater. 1046, 313–316 (2003)

    Google Scholar 

  31. G.-H. Lu, L. Cheng, K. Arshad, Y. Yuan, J. Wang, S. Qin, Y. Zhang, K. Zhu, G.-N. Luo, H. Zhou, B. Li, J. Wu, B. Wang, Fusion Sci. Technol. 71, 177 (2017)

    Article  Google Scholar 

  32. H.-S. Zhou, X.-G. Yuan, B. Li, H.-D. Liu, G.-N. Luo, J.-L. Chen, Y.-T. Song, J. Fusion Ener. 39, 355 (2020)

    Article  Google Scholar 

  33. M. Kakati, T. Sarmah, N. Aomoa, G. Sabavath, P. Dihingia, M. Rahman, J. Ghosh, Y.C. Saxena, B. Satpati, G. Sharma, A. Gupta, G. De Temmerman, Nucl. Fusion 59, 112008 (2019)

    Article  ADS  Google Scholar 

  34. B.D. Blackwell, J.F. Caneses, C.M. Samuell, J. Wach, J. Howard, C. Corr, Plasma Sources Sci. Technol. 21, 055033 (2012)

    Article  ADS  Google Scholar 

  35. K.-S. Chung, H.-J. Woo, S.-G. Cho, Y.-S. Choi, S.-H. Han, B.-G. Hong, S.-H. Hong, H.-S. Kim, S.-J. Noh, T. Lho, S.-J. Park, H.-J. You, Fusion Sci. Technol. 63, 16 (2013)

    Article  Google Scholar 

  36. K.-S. Chung, H.-J. Woo, G.-S. Choi, J.-J. Do, Y.-J. Seo, H.-J. You, Contrib. Plasma Phys. 46, 354 (2006)

    Article  ADS  Google Scholar 

  37. I.J. Kang, M.-K. Bae, T. Lho, K.-S. Chung, Curr. Appl. Phys. 17, 358 (2017)

    Article  ADS  Google Scholar 

  38. S. Cho, T. Lho, H.G. Choi, M.-K. Bae, I.J. Kang, D.H. Lee, S.K. Joo, K.-S. Chung, Fusion Sci. Technol. 68, 157 (2015)

    Article  Google Scholar 

  39. H.-J. Woo, K.-S. Chung, H.-J. You, M.-J. Lee, T. Lho, K.K. Choh, J.-S. Yoon, Y.H. Jung, B. Lee, S.J. Yoo, M. Kwon, Rev. Sci. Instrum. 78, 103505 (2007)

    Article  ADS  Google Scholar 

  40. I.J. Kang, K.Y. Lee, K.I. Lee, Y.-S. Choi, S.G. Cho, M.K. Bae, D.-H. Lee, S.H. Hong, T. Lho, K.-S. Chung, J. Intsrum. C 10, 12019 (2019)

    Google Scholar 

  41. Y. Lim, Y.S. You, W. Lee, B. Ahn, S.Y. Moon, B. Kim, H.-J. Woo, T. Lho, W. Choe, Y.-C. Ghim, Plasma Source Sci. Technol. 29, 115012 (2020)

    Article  ADS  Google Scholar 

  42. K.-B. Chai, D.-H. Kwon, Plasma Phys. Control. Fusion 62, 035007 (2020)

    Article  ADS  Google Scholar 

  43. F. P. Incropera, D. P. DeWitt, Fundamentals of Heat and Mass Transfer, 4th ed (Wiley, New York, 1996) Chap. 12–13

  44. T. D. Akhmetov, V. I. Davydenko, A. A. Ivanov, A. Kreter, V. V. Mishagin, V. Ya, Savkin, G. I. Shulzhenko, B. Unterberg, Rev. Sci. Instrum. 87, 056106 (2016)

  45. K.-S. Chung, J. Appl. Phys. 69, 3451 (1991)

    Article  ADS  Google Scholar 

  46. I.H. Hutchinson, Control. Fusion Plasma Phys. 44, 1953 (2002)

  47. K.-S. Chung, H.-J. Woo, Y.-S. Choi, M.-J. Lee, Contrib. Plasma Phys. 48, 430 (2008)

    Article  ADS  Google Scholar 

  48. K.-S. Chung, I.H. Hutchinson, Phys. Rev. A 38, 4721 (1988)

    Article  ADS  Google Scholar 

  49. R.C. Bissel, P.C. Johnson, Phys. Fluids 30, 779 (1984)

    Article  ADS  Google Scholar 

  50. G.A. Emmert, R.M. Wieland, A.T. Mense, J.N. Davidson, Phys. Fluids 23, 803 (1980)

    MathSciNet  Article  ADS  Google Scholar 

  51. S. Kado, Y. Iida, S. Kajita, D. Yamasaki, A. Okamoto, B. Xiao, T. Shikama, T. Oishi, S. Tanaka, J. Plasma Fusion Res. 81, 810 (2005)

    Article  ADS  Google Scholar 

  52. S.I. Krasheninnikov, A.Y. Pigarov, D.J. Sigmar, Phys. Lett. A 214, 285 (1996)

    Article  ADS  Google Scholar 

  53. S.I. Krasheninnikov, J. Nucl. Mater. 241–243, 283 (1997)

    Article  ADS  Google Scholar 

  54. Y.-S. Choi, K.-S. Chung, H.-J. Woo, M.-J. Lee, T. Lho, J. Phys. D Appl. Phys. A 42, 225205 (2009)

    Article  ADS  Google Scholar 

  55. E.-K. Park, H.-J. Woo, K.-S. Chung, H. Tanaka, S. Kajita, N. Ohno, Curr. Appl. Phys. 12, 1497 (2012)

    Article  ADS  Google Scholar 

  56. P.C. Stangeby, Phys. Fluids 27, 2699 (1984)

    Article  ADS  Google Scholar 

  57. K.-S. Chung, S. Kado, Phys. Plasmas 13, 104509 (2006)

    Article  ADS  Google Scholar 

  58. S.Y. Kang, T.H. Chung, K.-S. Chung, Rev. Sci. Instrum. 80, 013502 (2009)

    Article  ADS  Google Scholar 

  59. H. Amemiya, Jpn. J. Appl. Phys., Part 1 25, 595 (1986)

    Article  Google Scholar 

  60. F.F. Chen, Plasma Diagnostic Techniques, edited by R. H. Huddlestone and S. L. Leonard (Academic, New York, 1965), p. 134

  61. H.M. Mott-Smith, I. Langmuir, Phys. Rev. 28, 727 (1926)

    Article  ADS  Google Scholar 

  62. M. Shindo, S. Uchino, R. Ichiki, S. Yoshimura, Y. Kawai, Rev. Sci. Instrum. 72, 2288 (2001)

    Article  ADS  Google Scholar 

  63. R.L.F. Boyd, J.B. Thompson, Proc. R. Soc. Lond. Ser. A 252, 102 (1959)

  64. H. Amemiya, J. Phys. D 23, 999 (1990)

    Article  ADS  Google Scholar 

  65. T.E. Sheridan, P. Chabert, R.W. Boswell, Plasma Sources Sci. Technol. 8, 457 (1999)

    Article  ADS  Google Scholar 

  66. M. Tuszewski, J. Appl. Phys. 79, 8967 (1996)

    Article  ADS  Google Scholar 

  67. J. T. Gudmundsson, Ph.D. thesis, University of California at Berkeley (1996)

  68. Y.H. Jung, J.-S. Yoon, S.J. Yoo, Y.-W. Kim, T. Lho, B. Lee, J.-J. Do, H.-J. Woo, K.-S. Chung, Contrib. Plasma Phys. 46, 460 (2006)

    Article  ADS  Google Scholar 

  69. H.-J. Woo, K.-S. Chung, T. Lho, R. McWilliams, J. Kor. Phys. Soc. 48, 260 (2006)

    Google Scholar 

  70. A.M. Keesee, E.E. Scime, R.F. Boivin, Rev. Sci. Instum. 75, 4091 (2004)

    Article  ADS  Google Scholar 

  71. M.J. van de Sande, J.J.A.M. van der Mullen, J. Phys. D Appl. Phys. 35, 1381 (2002)

    Article  ADS  Google Scholar 

  72. T. Matsoukas, M. Russell, J. Appl. Phys. 77, 4285 (1995)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National R&D Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT&Future Planning (2019M1A7A1A03088471). This research was partially supported by the R&D Program of ”Plasma Convergence and Fundamental Research (1711124796)” through the Korea Institute of Fusion Energy (KFE) funded by the Government of the Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyu-Sun Chung.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Woo, HJ., Park, I.S., Kang, I.J. et al. Development of plasma sources and diagnostics for the simulation of fusion edge plasmas. J. Korean Phys. Soc. 80, 735–758 (2022). https://doi.org/10.1007/s40042-021-00374-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00374-x

Keywords

  • Plasma–material interaction
  • \(\hbox {LaB}_6\) cathode
  • Divertor plasma
  • Plasma diagnostics
  • Electric probes
  • Laser-induced fluorescence (LIF)
  • Laser Thomson scattering (LTS)