Skip to main content

Spectral behaviors of evanescent-wave-coupled gain lasing from dielectric-coated cylindrical microcavities


The spectral behavior of evanescent-wave-pumped and gain-coupled lasing was investigated in a dielectric-coated optical fiber surrounded by a dye-doped liquid. As the coating thickness increases, the lasing spectrum exhibits a blue shift due to a decrease in the number of the dye molecules in the evanescent field region of the whispering gallery mode. For comparison, lasing spectra of bare fibers with different dye concentrations were also measured. A simple model for evanescent-wave gain-coupled lasing in a coated cavity is proposed to explain the observed shifting behaviour.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. J.C. Knight, H.S.T. Driver, G.N. Robertson, J. Opt. Soc. Am. B 11, 2046 (1994)

    ADS  Article  Google Scholar 

  2. V.D. Ta, R. Chen, H. Sun, Sci. Rep. 9, 17017 (2019)

    ADS  Article  Google Scholar 

  3. M.V. Artemyev, U. Woggon, Appl. Phys. Lett. 76, 1353 (2000)

    ADS  Article  Google Scholar 

  4. X.-Y. Pu, W.-K. Lee, Opt. Lett. 25, 466 (2000)

    ADS  Article  Google Scholar 

  5. S.L. McCall, A.F.J. Levi, R.E. Slusher, S.J. Perton, R.A. Logan, Appl. Phys. Lett. 60, 289 (1992)

    ADS  Article  Google Scholar 

  6. D.K. Armani, T.J. Kippenberg, S.M. Spillane, K.J. Vahala, Nature 421, 925 (2003)

    ADS  Article  Google Scholar 

  7. P.W. Barber, S.C. Hill, Light scattering by particles: computational methods (World Scientific, Singapore, 1990)

    Book  Google Scholar 

  8. S.T. Chu, B.E. Little, W. Pan, T. Kaneko, S. Sato, Y. Kokubun, I.E.E.E. Photon, Technol. Lett. 11, 691 (1999)

    Article  Google Scholar 

  9. T.J. Kippenberg, R. Holzwarth, S.A. Diddams, Science 332, 555 (2011)

    ADS  Article  Google Scholar 

  10. A. Polmana, B. Min, J. Kalkman, T.J. Kippenberg, K.J. Vahalab, Appl. Phys. Lett. 84, 1037 (2004)

    ADS  Article  Google Scholar 

  11. H.J. Moon, K.S. Hyun, C. Lim, J. Korean Phys. Soc. 73, 1506 (2018)

    ADS  Article  Google Scholar 

  12. H.J. Moon, Y.T. Chough, K. An, Phys. Rev. Lett. 85, 3161 (2000)

    ADS  Article  Google Scholar 

  13. Y.-X. Zhang, X.-Y. Pu, K. Zhu, L. Feng, J. Opt. Soc. Am. B 28, 2048 (2011)

    ADS  Article  Google Scholar 

  14. Y.-X. Zhang, X.-Y. Pu, L. Feng, D.-Y. Han, Y.-T. Ren, Opt. Express 21, 12617 (2013)

    ADS  Article  Google Scholar 

  15. T. Kobayashia, N. Byrne, Appl. Phys. Lett. 99, 153307 (2011)

    ADS  Article  Google Scholar 

  16. A. Shevchenko, K. Lindfors, S.C. Buchter, M. Kaivola, Opt. Commun. 245, 349 (2005)

    ADS  Article  Google Scholar 

  17. X. Jiang, Q. Song, L. Xu, J. Fu, L. Tonga, Appl. Phys. Lett. 90, 233501 (2007)

    ADS  Article  Google Scholar 

  18. H.J. Moon, G.W. Park, S.B. Lee, K. An, J.H. Lee, Appl. Phys. Lett. 84, 4547 (2004)

    ADS  Article  Google Scholar 

  19. A.W. Fang, R. Jones, H. Park, O. Cohen, O. Raday, M.J. Paniccia, J.E. Bowers, Opt. Express 15, 2315 (2007)

    ADS  Article  Google Scholar 

  20. A.W. Fang, B.R. Koch, K.-G. Gan, H. Park, R. Jones, O. Cohen, M.J. Paniccia, D.J. Blumenthal, J.E. Bowers, Opt. Express 16, 1393 (2008)

    ADS  Article  Google Scholar 

  21. D. Liang, M. Florentino, A. W. Fang, D. Dai, Y.-H. Kuo, R. G. Beausoleil, J.E. Bowers, in Proceeding of 6th IEEE international conference on group IV photonics, vol. 208 (2009)

  22. H.J. Moon, J. Opt. Soc. Am B 27, 512 (2010)

    ADS  Article  Google Scholar 

  23. F.M. Zehentbauer, C. Moretto, R. Stephen, T. Thevar, J.R. Gilchrist, D. Pokrajac, K.L. Richard, J. Kiefer, Spectrochim. Acta Mol. Biomol. Spectrosc. 121, 147 (2014)

    ADS  Article  Google Scholar 

  24. D.W. Vernooy, V.S. Ilchenko, H. Mabuchi, E.W. Streed, H.J. Kimble, Opt. Lett. 23, 247 (1998)

    ADS  Article  Google Scholar 

  25. M. Milosevic, Appl. Spectrosc. 67, 126 (2013)

    ADS  Article  Google Scholar 

Download references


This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2015R1D1A1A01057172).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Hee-Jong Moon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moon, HJ. Spectral behaviors of evanescent-wave-coupled gain lasing from dielectric-coated cylindrical microcavities. J. Korean Phys. Soc. 80, 285–292 (2022).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Evanescent wave
  • Microcavity
  • Lasing
  • Occupation factor