Skip to main content
Log in

Production of bottomonium states in pp collisions at \(\sqrt{s} = 8.16\) TeV

  • Original Paper - Particles and Nuclei
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We investigate the production of bottomonium states in pp collisions by focusing on their production cross sections as functions of the rapidities and the transverse momenta at various collision energies. Based on the measurements of the \(\Upsilon \text {(1S)}\) production cross section at \(\sqrt{s}=2.76\), 5.02, and 7.0 TeV by the CMS Collaboration, we obtain the production cross section of the \(\Upsilon \text {(1S)}\) at \(\sqrt{s}=8.16\) TeV using both the extrapolation method and a fixed order with next-to-leading log (FONLL) analysis. We also use an extrapolation technique to discuss the \(\Upsilon \text {(2S)}\) and the \(\Upsilon \text {(3S)}\) production cross sections in pp collisions at \(\sqrt{s}=8.16\) TeV. We expect our evaluation of the \(\Upsilon \text {(1S)}\) production cross sections at \(\sqrt{s}=8.16\) TeV to be helpful in not only understanding those in pp collisions but also studying various effects such as CNM effects in PbPb collisions. Moreover, we hope the production cross sections of \(\Upsilon \text {(1S)}\), \(\Upsilon \text {(2S)}\), and \(\Upsilon \text {(3S)}\) estimated here will play important roles as useful references in measuring the nuclear modification factor, \(R_{AA}\), for \(\Upsilon \text {(1S)}\), \(\Upsilon \text {(2S)}\), and \(\Upsilon \text {(3S)}\), which will be available soon from a PbPb collision analysis at \(\sqrt{s}\) = 5.02 TeV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. F. Karsch, E. Laermann, in Quark-Gluon Plasma III, R. C. Hwa and X.-N. Wang, eds. World Scientific Publishing Co. Pte. Ltd., 2004. arXiv:hep-lat/0305025

  2. E.V. Shuryak, Sov. Phys. JETP 47, 212 (1978)

    ADS  Google Scholar 

  3. T. Matsui, H. Satz, Phys. Lett. B 178, 416 (1986)

    Article  ADS  Google Scholar 

  4. A. Mocsy, P. Petreczky, Phys. Rev. Lett. 99, 211602 (2007). arXiv:0706.2183

  5. C.M.S. Collaboration, EPJC 77, 252 (2017)

    Article  Google Scholar 

  6. C.M.S. Collaboration, Phys. Lett. B 790, 270 (2010)

    Google Scholar 

  7. R.L. Thews, M. Schroedter, J. Rafelski, Phys. Rev. C 63, 211602 (2001). arXiv:hep-ph/0007323

  8. A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel, Nucl. Phys. A 789 (2007) 334–356. arXiv:nucl-th/0611023

  9. R. Vogt, Phys. Rev. C 81, 044903 (2010)

    Article  ADS  Google Scholar 

  10. C. Gerschel, J. Hufner, Phys. Rev. B 207, 253 (1988)

    Google Scholar 

  11. M. Laine, O. Philipsen, P. Romatschke, M. Tassler, JHEP 03, 054 (2007)

    Article  ADS  Google Scholar 

  12. R. Sharma, I. Vitev, Phys. Rev. C 87, 044905 (2013)

    Article  ADS  Google Scholar 

  13. F. Bossu, Z. C. del Valle, A. de Falco, M. Gagliardi, S. Grigoryan, G. Martinez Garcia, arXiv:1103.2394 [nucl-ex]

  14. S. Cho, D.H. Moon, J. Korean Phys. Soc. 71, 134 (2017)

    Article  ADS  Google Scholar 

  15. ALICE Collaboration, JHEP 1807, 160 (2018)

    Article  ADS  Google Scholar 

  16. ALICE Collaboration, Eur. Phys. J. C. 77(6), 392 (2017)

    Article  ADS  Google Scholar 

  17. ALICE, LHCb Collaborations, ALICE-PUBLIC-2013-002, LHCb-CONF-2013-013, http://cds.cern.ch/record/1639617

  18. M. Cacciari, M. Greco, P. Nason, JHEP 9805, 007 (1998)

    Article  ADS  Google Scholar 

  19. M. Cacciari, S. Frixione, P. Nason, JHEP 0103, 006 (2001)

    Article  ADS  Google Scholar 

  20. M. Cacciari, P. Nason, R. Vogt, Phys. Rev. Lett. 95, 122001 (2005)

    Article  ADS  Google Scholar 

  21. C.M.S. Collaboration, Phys. Lett. B 727, 101–125 (2013)

    Article  ADS  Google Scholar 

  22. A.M. Sirunyan, CMS Collaboration et al., Phys. Lett. B 780, 251 (2018)

    Article  ADS  Google Scholar 

  23. C. Patrignani, et al. (Particle Data Group), Chin. Phys. C 40, no. 10, 100001 (2016)

  24. D.W. Sivers, S.J. Brodsky, R. Blankenbecler, Phys. Rept. 23, 1–121 (1976)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the reviewer very much for helpful comments and suggestions on the paper. This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (NRF-2021R1A2C2012584), by a 2017 Research Grant from Kangwon National University (No. 520170291), and by a National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2019R1A2C1087107).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sungtae Cho.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moon, D.H., Cho, S. Production of bottomonium states in pp collisions at \(\sqrt{s} = 8.16\) TeV. J. Korean Phys. Soc. 79, 1007–1018 (2021). https://doi.org/10.1007/s40042-021-00319-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00319-4

Keywords

Navigation