Skip to main content
Log in

Prediction of radiation-induced degradation for a FAPbBr3 perovskite solar cell

  • Original Paper - Atoms, Molecules and Optics
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

This study used the equivalent displacement damage dose (EDDD) model to predict radiation-induced damage of formamidinium lead–bromide (FAPbBr3) perovskite solar cells. The response characteristics of FAPbBr3 perovskites irradiated with 60Co gamma rays were estimated using the light current voltage (LIV) curve, and radiation damage was analyzed in terms of atomic displacement caused by secondary electrons emitted due to gamma rays. The EDDD model was derived in consideration of the nonionizing energy loss of gamma rays (\({\mathrm{NIEL}}_{\gamma }\)), fluence of gamma rays (\({\Phi }_{\gamma })\), and power factor n. Here, the \({\mathrm{NIEL}}_{\gamma }\) was the product of the slowed spectrum of secondary electrons calculated in Geant4 and the NIEL of electrons (\({\mathrm{NIEL}}_{e})\) obtained using the SR-NIEL web calculator. In terms of the maximum power output (\({P}_{\mathrm{max}}\)), the prediction curve for radiation-induced damage derived using the EDDD model was consistent with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R. Hoheisel et al., Phys. Simul. Photon. Eng. Photovolt. Devices II 8620, 86200U (2013)

    Google Scholar 

  2. J. Yang, Q. Bao, L. Shen, L. Ding, Nano Energy 76, 105019 (2020)

    Article  Google Scholar 

  3. I. Cardinaletti et al., Sol. Energy Mater. Sol. Cells 182, 121 (2018)

    Article  Google Scholar 

  4. H. Shulman, W. S. Ginell, NASA SP-8053 15 (1970). https://ntrs.nasa.gov/search.jsp?R=19710015558

  5. X.B. Shen et al., AIP Adv. 9, (2019). https://doi.org/10.1063/1.5094472

    Article  ADS  Google Scholar 

  6. E. El Allam et al., IEEE Trans. Nucl. Sci. 64, 991 (2017)

    Article  ADS  Google Scholar 

  7. Y. Okuno et al., Jpn. J. Appl. Phys. (2020). https://doi.org/10.35848/1347-4065/ab7c0e

    Article  Google Scholar 

  8. S.R. Messenger et al., Prog. Photovolt. Res. Appl. 9, 103 (2001)

    Article  Google Scholar 

  9. S.R. Messenger et al., IEEE Trans. Nucl. Sci. 50, 2494 (2003)

    Article  ADS  Google Scholar 

  10. J.R. Srour, C.J. Marshall, P.W. Marshall, IEEE Trans. Nucl. Sci. 50 III, 653 (2003)

    Article  ADS  Google Scholar 

  11. G.P. Summers, E.A. Burke, M.A. Xapsos, Radiat. Meas. 24, 1 (1995)

    Article  Google Scholar 

  12. C. Inguimbert, S. Messenger, IEEE Trans. Nucl. Sci. 59, 3117 (2012)

    Article  ADS  Google Scholar 

  13. Y. Ko, Y. Kim, C. Lee, Y. Kim, B.K. Min, H. Gwon, Y.J. Yun, Y. Jun, A.C.S. Appl, Energy Mater 3, 2331–2341 (2019). https://doi.org/10.1021/acsaem.9b01863

    Article  Google Scholar 

  14. K. Yang, K. Huang, X. Li, S. Zheng, P. Hou, J. Wang, J. Yang, Organ. Electron. 71, 79–84 (2019)

    Article  ADS  Google Scholar 

  15. F. Lang, N.H. Nickel, J. Bundesmann, S. Seidel, A. Denker, S. Albrecht, V.V. Brus, J. Rappich, B. Rech, G. Landi, H.C. Neitzert, Adv. Mater. 28, 8726 (2016)

    Article  Google Scholar 

  16. J. Barbé, D. Hughes, Z. Wei, A. Pockett, H.K.H. Lee, K.C. Heasman, M.J. Carnie, T.M. Watson, W.C. Tsoi, Sol. RRL 3, 1 (2019)

    Article  Google Scholar 

  17. S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectromet. Detect. Assoc. Equip 506, 250 (2003)

    Article  ADS  Google Scholar 

  18. J. Allison et al., IEEE Trans. Nucl. Sci. 53, 270 (2006)

    Article  ADS  Google Scholar 

  19. J. Allison, et al., Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 835, 186 (2016).

  20. M.A. Xapsos et al., IEEE Trans. Nucl. Sci. 41, 1945 (1994)

    Article  ADS  Google Scholar 

  21. C. Baur, M. Gervasi, P. Nieminen, S. Pensotti, P. G. Rancoita and M. Tacconi, Proc. 13th ICATPP Conf. Astroparticle Particle Space Phys. Detectors Phys. Appl. pp. 692–707 (2013). https://doi.org/10.1142/9789814603164_0111

  22. A.Y. Konobeyev et al., Nucl. Energy Technol. 3, 169 (2017)

    Article  Google Scholar 

  23. J. Topps, R.C. Elliott, Nat. Publ. Gr. 205, 498 (1965)

    Google Scholar 

  24. http://www.sr-niel.org/. Accessed 13 Jan 2021

Download references

Acknowledgements

This work was supported by the Nuclear R&D program of the Ministry of Science and ICT (MSIT), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-Jeong Gwon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shim, H.E., Park, J., Yeon, Y.H. et al. Prediction of radiation-induced degradation for a FAPbBr3 perovskite solar cell. J. Korean Phys. Soc. 80, 191–196 (2022). https://doi.org/10.1007/s40042-021-00313-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00313-w

Keywords

Navigation