Skip to main content

Semiconductor laser active frequency stabilization technologies: a review

Abstract

Laser frequency stabilization is one of the key technologies in atomic physics experimental system. In this paper, the basic principles, and features and the latest research progress on various kinds of semiconductor laser, active frequency stabilization techniques based on different locking reference standards are systematically described, and their practical applications in different fields are briefly overviewed. Finally, we provide a prospective development trends for semiconductor laser, active frequency stabilization technologies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. 1.

    R.N. Hall, G.E. Fenner, J.D. Kingsley, Phys. Rev. Lett. 9, 186 (1962)

    Google Scholar 

  2. 2.

    M.I. Nathan, W.P. Dumke, G. Burns, Appl. Phys. Lett. 1, 62 (1962)

    ADS  Google Scholar 

  3. 3.

    T.M. Quist, R.H. Rediker, R.J. Keyes, Appl. Phys. Lett. 1, 91 (1962)

    ADS  Google Scholar 

  4. 4.

    A.D. Ludlow, M.M. Boyd, J. Ye, E. Peik, P.O. Schmidt, Rev. Mod. Phys. 87, 637 (2015)

    ADS  Google Scholar 

  5. 5.

    H. Haeffner, C.F. Roos, R. Blatt, Phys. Rep. 469, 155 (2008)

    ADS  MathSciNet  Google Scholar 

  6. 6.

    K.B. Macadam, A. Steinbach, C. Wieman, Am. J. Phys. 60, 1098 (1992)

    ADS  Google Scholar 

  7. 7.

    S. Herrmann, A. Senger, K. Möhle, M. Nagel, E.V. Kovalchuk, A. Peters, Phys. Rev. D Part F. Gravit. Cosmol. 80, 11 (2009)

    Google Scholar 

  8. 8.

    S.E. Park, H.S. Lee, T.Y. Kwon, Opt. Commun. 192, 57 (2001)

    ADS  Google Scholar 

  9. 9.

    G. Moon, H.R. Noh, J. Korean Phys. Soc. 50, 1037 (2007)

    ADS  Google Scholar 

  10. 10.

    G. Moon, H.R. Noh, J. Opt. Soc. Am. B 25, 2101 (2008)

    ADS  Google Scholar 

  11. 11.

    C. Wieman, T.W. Hansch, Phys. Rev. Lett. 36, 1170 (1976)

    ADS  Google Scholar 

  12. 12.

    H.M. Wang, Z.S. Xu, S.C. Ma, Opt. Lett. 44, 5816 (2019)

    ADS  Google Scholar 

  13. 13.

    B. Wu, Y. Zhou, K. Weng, J. Opt. Soc. Am. B 35, 2705 (2018)

    ADS  Google Scholar 

  14. 14.

    S.E. Park, H.R. Noh, Opt. Express 21, 14066 (2013)

    ADS  Google Scholar 

  15. 15.

    H.R. Noh, S.E. Park, Opt. Commun. 336, 173 (2015)

    ADS  Google Scholar 

  16. 16.

    S. Pustelny, V. Schultze, T. Scholtes, Rev. Sci. Instrum. 87, 063107 (2016)

    ADS  Google Scholar 

  17. 17.

    G.W. Choi, H.R. Noh, J. Phys. B 48, 115008 (2015)

    ADS  Google Scholar 

  18. 18.

    K.U. Schreiber, A. Gebauer, J.P.R. Wells, Opt. Lett. 38, 3574 (2013)

    ADS  Google Scholar 

  19. 19.

    M.J. Thorpe, L. Rippe, T.M. Fortier, Nat. Photonics 5, 688 (2011)

    ADS  Google Scholar 

  20. 20.

    K. Harada, T. Aoki, S. Ezure, K. Kato, Appl. Opt. 55, 1164 (2016)

    ADS  Google Scholar 

  21. 21.

    P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T.J. Kippenberg, Nature 450, 1214 (2007)

    ADS  Google Scholar 

  22. 22.

    Y.J. Yao, J. Semicond. 39, 11 (2018)

    Google Scholar 

  23. 23.

    D.W. Allan, Ultrasonics ferroelectrics and frequency control. IEEE Trans. 34, 647–654 (1987)

    Google Scholar 

  24. 24.

    J.A. Barnes, A.R. Chi, IEEE Trans. Instrum. Meas. IM–20, 105–120 (1971)

    Google Scholar 

  25. 25.

    P.H. Lee, M.L. Skolnick, Appl. Phys. Lett. 10, 303 (1967)

    ADS  Google Scholar 

  26. 26.

    Y. Sakai, I. Yokohama, G. Kano, Photonics Technol. Lett. IEEE 4, 96 (1992)

    ADS  Google Scholar 

  27. 27.

    Q. Wang, J. Duan, X.H. Qi, Chin. Phys. Lett. 32, 054206 (2015)

    ADS  Google Scholar 

  28. 28.

    Y. Ohta, S. Maehara, K. Hasebe, Proc. SPIE Int. Soc. Opt. Eng. 17, 241 (2006)

    Google Scholar 

  29. 29.

    G. Genov, T.E. Lellinger, T. Halfmann, J. Opt. Soc. Am. B 34, 2018 (2017)

    ADS  Google Scholar 

  30. 30.

    C.P. Pearman, C.S. Adams, S.G. Cox, J. Phys. B 35, 5141 (2002)

    ADS  Google Scholar 

  31. 31.

    S. Nakayama, Jpn. J. Appl. Phys. Part 1 24, 1 (1985)

    Google Scholar 

  32. 32.

    S. Nakayama, Phys. Scr. T70, 64 (1997)

    ADS  Google Scholar 

  33. 33.

    M.L. Harris, C.S. Adams, S.L. Cornish, I.C. McLeod, Phys. Rev. A 73, 062509 (2006)

    ADS  Google Scholar 

  34. 34.

    V.B. Tiwari, S. Singh, S.R. Mishra, Opt. Commun. 263, 249 (2006)

    ADS  Google Scholar 

  35. 35.

    Y.B. Kale, V.B. Tiwari, J. Opt. Soc. Am. B 21, 2531 (2014)

    ADS  Google Scholar 

  36. 36.

    R.W.P. Drever, J.L. Hall, F.V. Kowalski, Appl. Phys. B 31, 97 (1983)

    ADS  Google Scholar 

  37. 37.

    E.D. Black, Am. J. Phys. 69, 79 (2000)

    ADS  Google Scholar 

  38. 38.

    B.C. Young, Phys. Rev. Lett. 82, 3799 (1990)

    ADS  Google Scholar 

  39. 39.

    K. Numata, Phys. Rev. Lett. 93, 250602 (2004)

    ADS  Google Scholar 

  40. 40.

    N.C. Wong, J.L. Hall, J. Opt. Soc. Am. B 2, 1527 (1985)

    ADS  Google Scholar 

  41. 41.

    Z. Li, X. Sun, Y. Wang, Y. Zheng, K. Peng, Opt. Express 26, 18957 (2018)

    ADS  Google Scholar 

  42. 42.

    S. Häfner, Opt. Lett. 40, 2112 (2015)

    ADS  Google Scholar 

  43. 43.

    Y.Y. Jiang, Nature Photon. 5, 158 (2011)

    ADS  Google Scholar 

  44. 44.

    T.L. Nicholson, Phys. Rev. Lett. 109, 230801 (2012)

    ADS  Google Scholar 

  45. 45.

    T. Kessler, C. Hagemann, C. Grebing, Nat. Photonics 6, 687 (2011)

    ADS  Google Scholar 

  46. 46.

    D.G. Matei, T. Legero, S. Hfner, Phys. Rev. Lett. (2017). https://doi.org/10.1103/PhysRevLett.118.263202

    Article  Google Scholar 

  47. 47.

    H. Shen, L. Li, J. Bi, J. Wang, L. Chen, Phys. Rev. A (2015). https://doi.org/10.1103/PhysRevA.92.063809

    Article  Google Scholar 

  48. 48.

    Z. Li, W. Ma, W. Yang, Y. Wang, Y. Zheng, Opt. Lett. 41, 3331 (2016)

    ADS  Google Scholar 

  49. 49.

    J. Bi, Y. Zhi, L. Li, L. Chen, Appl. Opt. 58, 690 (2019)

    ADS  Google Scholar 

  50. 50.

    Q. Zhang, J. Chang, Z. Cong, Z. Wang, F. Wang, Sensors 18, 4255 (2018)

    ADS  Google Scholar 

  51. 51.

    W. Zhang, Opt. Lett. 39, 1980 (2014)

    ADS  Google Scholar 

  52. 52.

    Z. Tai, Opt. Lett. 41, 5584 (2016)

    ADS  Google Scholar 

  53. 53.

    M.L. Eickhoff, J.L. Hall, IEEE Trans. Instrum. Meas. 44, 155–158 (1995)

    Google Scholar 

  54. 54.

    R.K. Saj, D. Bloch, J.J. Snyder, Phys. Rev. Lett. 44, 1251 (1980)

    ADS  Google Scholar 

  55. 55.

    L.S. Ma, J.L. Hall, IEEE J. Quantum Electron. 26, 2006 (1990)

    ADS  Google Scholar 

  56. 56.

    E. Jaatinen, Opt. Commun. 120, 91–97 (1995)

    ADS  Google Scholar 

  57. 57.

    F. Bertinetto, P. Cordiale, G. Galzerano, E. Bava, IEEE Trans. Instrum. Meas. 50, 490 (2001)

    Google Scholar 

  58. 58.

    J. Zhang, D. Wei, C. Xie, K. Peng, Opt. Express 11, 1338 (2003)

    ADS  Google Scholar 

  59. 59.

    D.J. Mccarron, S.A. King, S.L. Cornish, Meas. Technol. 19, 252 (2008)

    Google Scholar 

  60. 60.

    Z. Fei, X.J. Wu, W.C. Zhong, Appl. Opt. 56, 2649 (2017)

    ADS  Google Scholar 

  61. 61.

    S. Lee, S.B. Lee, S.E. Park, Opt. Lasers Eng. 146, 106698 (2021)

    Google Scholar 

  62. 62.

    J.B. Long, S.J. Yang, Opt. Express 26, 27773 (2018)

    ADS  Google Scholar 

  63. 63.

    K.L. Corwin, Z.T. Lu, C.F. Hand, Appl. Opt. 37, 3295 (1998)

    ADS  Google Scholar 

  64. 64.

    D.J. Mccarron, I.G. Hughes, P. Tierney, Rev. Sci. Instrum. 78, 685 (2007)

    Google Scholar 

  65. 65.

    E. Talker, P. Arora, R. Zektzer, CLEO Appl. Technol. JW2A,110 (2019)

    Google Scholar 

  66. 66.

    C. Lee, G.Z. Iwata, E. Corsini, Rev. Sci. Instrum. 82, 3295 (2011)

    Google Scholar 

  67. 67.

    T. Xiao, T. Wang, B. Yan, Rev. Sci. Instrum. 89, 046106 (2018)

    ADS  Google Scholar 

  68. 68.

    G. Wasik, W. Gawlik, J. Zachorowski, Appl. Phys. B 75, 613 (2002)

    ADS  Google Scholar 

  69. 69.

    S. Okubo, K. Iwakuni, T. Hasegawa, Opt. Commun. 285, 4107 (2012)

    ADS  Google Scholar 

  70. 70.

    P. Marin, C.H. David, Opt. Commun. 285, 50 (2012)

    Google Scholar 

  71. 71.

    G.W. Choi, H.R. Noh, J. Phys. B At. Mol. Phys. 48, 115008 (2015)

    ADS  Google Scholar 

  72. 72.

    D.Q. Su, T.F. Meng, Z.H. Ji, Appl. Opt. 53, 7011 (2014)

    ADS  Google Scholar 

  73. 73.

    L.J. Zhang, H. Zhang, Y.T. Zhao, Chin. Phys. B 28, 84211 (2019)

    Google Scholar 

  74. 74.

    T.W. Hänsch, Rev. Mod. Phys. 78, 1297 (2006)

    ADS  Google Scholar 

  75. 75.

    J.L. Hall, Rev. Mod. Phys. 78, 1279 (2006)

    ADS  Google Scholar 

  76. 76.

    Q. Quraishi, M. Griebel, T. Kleine-Ostmann, Opt. Lett. 30, 3231 (2005)

    ADS  Google Scholar 

  77. 77.

    E. Benkler, F. Rohde, H.R. Telle, Opt. Lett. 38, 555 (2013)

    ADS  Google Scholar 

  78. 78.

    J. Tsuboi, T. Kuboki, K. Kato, Jpn. J. Appl. Phys. 55, 08RB10 (2016)

    Google Scholar 

  79. 79.

    R. Antoine, L. Peng, K. Naoya, Optica 5, 1070 (2018)

    Google Scholar 

  80. 80.

    L. Rippe, B. Julsgaard, A. Walther, Opt. Express 15, 11444 (2006)

    Google Scholar 

  81. 81.

    R.L. Cone, C.W. Thiel, Y. Sun, Laser Sci. LTu1G, 3 (2013)

    Google Scholar 

  82. 82.

    M.J. Thorpe, D.R. Leibrandt, T. Rosenband, New J. Phys. 15, 33006 (2012)

    Google Scholar 

  83. 83.

    P. Siddons, C.S. Adams, I.G. Hughes, J. Phys. B At. Mol. Opt. Phys. 42, 175004 (2009)

    ADS  Google Scholar 

  84. 84.

    S.L. Kemp, I.G. Hughes, S.L. Cornish, J. Phys. B At. Mol. Opt. Phys. 44, 235004 (2011)

    ADS  Google Scholar 

  85. 85.

    W. Quan, Y. Li, R. Li, Appl. Opt. 55, 2503 (2016)

    ADS  Google Scholar 

  86. 86.

    N.D. Lemke, A.D. Ludlow, Z.W. Barber, Phys. Rev. Lett. 103, 063001 (2009)

    ADS  Google Scholar 

  87. 87.

    N. Hinkley, J.A. Sherman, Science 341, 1215 (2013)

    ADS  Google Scholar 

  88. 88.

    Y. Li, Y. Ge, Chin. Opt. Lett. 16, 051402 (2018)

    ADS  Google Scholar 

  89. 89.

    Y. Bai, F.X. Yu, In 2019 Joint Conference of the C International Frequency Control Symposium and European Frequency and Time Forum (EFTF/IFC), IEEE (2019)

  90. 90.

    J. Ren, H. Liu, X.T. Lu, H. Chang, Appl. Sci. 10, 4928 (2020)

    Google Scholar 

  91. 91.

    J.A. Devlin, M.R. Tarbutt, Phys. Rev. A (2018). https://doi.org/10.1103/PhysRevA.98.063415

    Article  Google Scholar 

  92. 92.

    V. Singh, V.B. Tiwari, S.R. Mishra, Appl. Phys. B 122, 225 (2016)

    ADS  Google Scholar 

  93. 93.

    C. Charbel, M. Isam, Z. Samir, Opt. Express 28, 494 (2020)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Major Scientific Project of Zhejiang Laboratory (2019MB0AE01). Y. W. initiated the manuscript. Y. W., B. S. and X. L. participated in the revision of the manuscript. Y. W. provided overall supervision. All authors have read and agreed to the published version of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yue Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Sun, B. & Li, X. Semiconductor laser active frequency stabilization technologies: a review. J. Korean Phys. Soc. 79, 795–809 (2021). https://doi.org/10.1007/s40042-021-00308-7

Download citation

Keywords

  • Atomic physics
  • Semiconductor laser
  • Frequency stabilization