Skip to main content
Log in

Nonlinear excitation of large-amplitude ion acoustic solitary waves in a multispecies warm ion plasma with ultra-relativistic degenerate electrons

  • Original Paper - Fluids, Plasma and Phenomenology
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Large-amplitude ion acoustic solitons (IASs) in an ultra-relativistic degenerate quantum plasma consisting of non-degenerate warm light nuclei, stationary heavy nuclei and relativistically degenerate electrons are investigated. The Sagdeev’s pseudo-potential approach is adopted to obtain the energy integral equation for the study large-amplitude IASs. The Mach number domain \(\left( {M_{l} \le M \le M_{h} } \right)\) is determined numerically in term of various parameters. Our numerical investigation shows that only compressive solitary waves can propagate in present plasma systems. The effect of different plasma parameters, such as the number density (\(\mu_{e}\)), degenerate electron density (\(k\)), relativistic factor (\(\gamma\)), temperature ratio (\(\sigma\)) and Mach number (\(M\)), on the characteristic properties of solitary waves are reported. The corresponding phase trajectory is also drawn for the existing domain. The present theoretical study recovers the results from a previously published article (Sultana and Schlickeiser, Phys. Plasmas 25: 022110, 2018) for a cold multi-ion quantum plasma. Our result may be helpful to understand the basic characteristic of nonlinear solitary waves propagating in a quantum plasma, in which the non-degenerate warm light nuclei, stationary heavy ions and relativistic degenerate electrons are present. Plasmas with the given composition are found in astrophysical object such as white dwarfs, neutrons stars, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T. Akhter, M.N. Hossain, A.A. Mamun, Commun Theor. Phys. 59, 745 (2013)

    Article  ADS  Google Scholar 

  2. M. Akbari-Moghanjoughi, Astrophys. Space Sci. 332, 187–192 (2011)

    Article  ADS  Google Scholar 

  3. N. Roy, M.S. Zobaer, A.A. Mamun, J. Modern. Phys. 3, 850–855 (2012)

    Article  Google Scholar 

  4. S.K. El-Labany, E.F. El-Shamy, W.F. El-Taibany, P.K. Shukla, Phys. Lett. A 374, 960 (2010)

    Article  ADS  Google Scholar 

  5. S.L. Shapiro, A.A. Teukolsky, Black Holes, White Dwarfs and Neutron Stars (John Wiley and Sons, New York, 1983)

    Book  Google Scholar 

  6. S. Chandrasekhar, An Introduction to the Study of Stellar Structure (The University of Chicago, Chicago, 1939), pp. 360–362

    MATH  Google Scholar 

  7. S. Chandrasekhar, Mon. Not. R. Astron. Soc. 95, 207 (1935)

    Article  ADS  Google Scholar 

  8. S. Chandrasekhar, Astrophys. J. 74, 81 (1931)

    Article  ADS  Google Scholar 

  9. S. Chandrasekhar, Philos. Mag. 11, 592 (1931)

    Article  Google Scholar 

  10. A. Rasheed, N.L. Tsintsadze, G. Murtaza, Phys. Plasmas 18, 112701 (2011)

    Article  ADS  Google Scholar 

  11. A.P. Misra, S. Samanta, Phys. Plasmas 15, 122307 (2008)

    Article  ADS  Google Scholar 

  12. A.P. Misra, S. Banerjee, F. Haas, P.K. Shukla, L.P.G. Assis, Phys. Plasmas 17, 032307 (2010)

    Article  ADS  Google Scholar 

  13. A.A. Mamun, P.K. Shukla, Phys. Lett. A 374, 4238–4241 (2010)

    Article  ADS  Google Scholar 

  14. A.A. Mamun, P.K. Shukla, Phys. Plasmas 17, 104504 (2010)

    Article  ADS  Google Scholar 

  15. M. Abkari-Moghanjoughi, Phys. Plasmas 17, 052302 (2010)

    Article  ADS  Google Scholar 

  16. M. Abkari-Moghanjoughi, Phys. Plasmas 17, 072101 (2010)

    Article  ADS  Google Scholar 

  17. M. Abkari-Moghanjoughi, Phys. Plasmas 17, 092304 (2010)

    Article  ADS  Google Scholar 

  18. N. Roy, S. Tasnim, A.A. Mamun, Phys. Plasmas 19, 033705 (2012)

    Article  ADS  Google Scholar 

  19. M. Abkari-Moghanjoughi, Astrophys. Space Sci. 332, 187–192 (2011)

    Article  ADS  Google Scholar 

  20. M.R. Hossen, A.A. Mamun, Brazilian. J. Phys. 44, 673 (2014)

    Google Scholar 

  21. M.J. Alava, J.A. Heikkinen, Phys. Fluids 4, 9 (1992)

    Article  Google Scholar 

  22. T.S. Gill, H. Kaur, N.S. Saini, J. Plasma Phys. 71, 23–34 (2005)

    Article  ADS  Google Scholar 

  23. T.H. Kim, K.Y. Kim, J. Korean Physical Society 42, 363–366 (2003)

    Article  Google Scholar 

  24. O.H. El-Kalaawy, R.S. Ibrahim, Phys. Plasmas 15, 072303 (2008)

    Article  ADS  Google Scholar 

  25. S. Ali, W.M. Moslem, P.K. Shukla, R. Schlickeiser, Phys. Plasmas 14, 082307 (2007)

    Article  ADS  Google Scholar 

  26. V.I. Berezhiani, D.D. Tskhakaya, P.K. Shukla, Phys. Rev. A 46, 6608 (1992)

    Article  ADS  Google Scholar 

  27. S.A. Khan, S. Mahmood, S. Ali, Phys. Plasmas 16, 044505 (2009)

    Article  ADS  Google Scholar 

  28. O.P. Sah, Phys. Plasmas 16, 012105 (2009)

    Article  ADS  Google Scholar 

  29. H. Ur-Rehman, A. Shah, S. Mahmood, Q. Haque, Phys. Plasmas 18, 122302 (2011)

    Article  ADS  Google Scholar 

  30. H.K. Malik, Phys. Rev. E 54, 5844 (1996)

    Article  ADS  Google Scholar 

  31. C. Grabbe, Phys. Rev. Lett. 84, 3614 (2000)

    Article  ADS  Google Scholar 

  32. W. Masood, B. Eliasson, P.K. Shukla, Phys. Rev. E 81, 066401 (2010)

    Article  ADS  Google Scholar 

  33. S.A. Khan, A.M. Mirza, Commu. Theor. Phys. 55, 151 (2011)

    Article  Google Scholar 

  34. S. Ali, A. Ur-Rahman, Phys. Plasmas 21, 042116 (2014)

    Article  ADS  Google Scholar 

  35. S. Sadiq, S. Mahmood, Q. Haque, M.Z. Ali, Astrophys. J. 793, 27 (2014)

    Article  ADS  Google Scholar 

  36. B. Hosen, M.G. Shah, M.R. Hossen, A.A. Mamun, Eur. Phys. J. Plus 131, 81 (2016)

    Article  Google Scholar 

  37. B. Hosen, M.G. Shah, M.R. Hossen, A.A. Mamun, IEEE Trans. Plasma Sci. 45, 3316 (2017)

    Article  ADS  Google Scholar 

  38. O.H. El-Kalaawy, Phys. Plasmas 24, 032308 (2017)

    Article  ADS  Google Scholar 

  39. E. Gareia-Berro, S. Torres, L.G. Althaus, I. Renedo, P. Loren-Aguiltar, A.H. Corsico, R.D. Rohrmann, M.S. Alaris, J. Isern, Nature 465, 194 (2010)

    Article  ADS  Google Scholar 

  40. A. Witze, Nature 510, 196 (2014)

    Article  ADS  Google Scholar 

  41. A. Rehman, M.M. Kerr, W.F. El-Taibany, I. Kourakis, A. Qamar, Phys. Plasmas 22, 022305 (2015)

    Article  ADS  Google Scholar 

  42. M.M. Kerr, F. Hass, I. Kourakis, Phys. Plasmas 23, 052120 (2016)

    Article  ADS  Google Scholar 

  43. S. Sultana, R. Schlickeiser, Phys. Plasmas 25, 022110 (2018)

    Article  ADS  Google Scholar 

  44. S. Islam, S. Sultana, A.A. Mamun, Phys. Plasmas 24, 092115 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kishan Kumar.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, K., Mishra, M.K. Nonlinear excitation of large-amplitude ion acoustic solitary waves in a multispecies warm ion plasma with ultra-relativistic degenerate electrons. J. Korean Phys. Soc. 80, 142–152 (2022). https://doi.org/10.1007/s40042-021-00305-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00305-w

Keywords

Navigation