Skip to main content

Linearity enhancement and noise reduction in a passivated AlGaAs/InGaAs/GaAs high-electron mobility transistor

Abstract

AlGaAs/InGaAs high-electron mobility transistors (HEMTs) are fabricated using a developed highly selective process and then characterized. The AlGaAs/InGaAs HEMTs undergo (NH4)2Sx treatment prior to gate metal deposition. The experimental results demonstrate that the gate voltage swing (GVS) and the breakdown voltage of the studied HEMTs are increased upon passivation. Passivation also reduces the gate leakage current of the HEMTs. Sulfide passivation improves device linearity and reduces the minimum noise figure.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Y.S. Lin, B.Y. Chen, J. Vac. Sci. Technol. B 27, 606 (2009)

    Article  Google Scholar 

  2. 2.

    S. Ohadi, R. Faez, H.R. Hoseini, IEICE Electron. Express 7, 1447 (2010)

    Article  Google Scholar 

  3. 3.

    Y.S. Lin, C.C. Lu, IEEE Trans. Electron Devices 65, 783 (2018)

    ADS  Article  Google Scholar 

  4. 4.

    J.H. Tsai, P.S. Lin, W.C. Liu, ECS J. Solid State Sci. Technol. 9, 055019 (2020)

    ADS  Article  Google Scholar 

  5. 5.

    Y.S. Lin, Y.C. Ma, Microelectron. Eng. 217, 111107 (2019)

    Article  Google Scholar 

  6. 6.

    Y. Uenishi, H. Tanaka, H. Ukita, IEEE Trans. Electron Devices 41, 1778 (1994)

    ADS  Article  Google Scholar 

  7. 7.

    K. Hjort, J. Micromech. Microeng. 6, 370 (1996)

    ADS  Article  Google Scholar 

  8. 8.

    R.P. Ribas, J.L. Leclercq, J.M. Karam, B. Courtois, P. Viktorovitch, Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 51, 267 (1998)

    Article  Google Scholar 

  9. 9.

    S.A. Merritt, M. Dagenais, Electrochem. Soc. 140, L138 (1993)

    Article  Google Scholar 

  10. 10.

    E.A. Moon, J.L. Lee, H.M. Yoo, J. Appl. Phys. 84, 3933 (1998)

    ADS  Article  Google Scholar 

  11. 11.

    J.H. Kim, D.H. Lim, G.M. Yang, J. Vac. Sci. Technol. B. 16, 558–560 (1998)

    Article  Google Scholar 

  12. 12.

    C. Liao, M.P. Houng, Y.H. Wang, Electrochem. Solid State Lett. 7, C129 (2004)

    Article  Google Scholar 

  13. 13.

    E.Y. Chang, Y.L. Lai, Y.S. Lee, S.H. Chen, J. Electrochem. Soc. 148, G4 (2001)

    Article  Google Scholar 

  14. 14.

    B. Razavi, RF Microelectronics (Prentice Hall, Hoboken, 2011)

    Google Scholar 

  15. 15.

    D.M. Pozar, Microwave Engineering (John Wiley & Sons Inc., Hoboken, 2012)

    Google Scholar 

  16. 16.

    A. Tarakji, H. Fatima, X. Hu, J.-P. Zhang, G. Simin, M. Asif Khan, M.S. Shur, R. Gaska, IEEE Electron Device Lett. 24, 369 (2003)

    ADS  Article  Google Scholar 

  17. 17.

    W. Xing, Z. Liu, K. Ranjan, G.I. Ng, T. Palacios, IEEE Electron Device Lett. 39, 947 (2018)

    ADS  Article  Google Scholar 

  18. 18.

    Y.S. Lin, S.F. Lin, Micromachines 12, 7 (2021)

    Article  Google Scholar 

  19. 19.

    T. Suemitsu, Y.K. Fukai, M. Tokumitsu, F. Rampazzo, G. Meneghesso, E. Zanoni, IEICE Electron. Express 3, 310 (2006)

    Article  Google Scholar 

  20. 20.

    Y.S. Lin, Y.T. Lin, Y.W. Huang, Thin Solid Films 519, 3388 (2011)

    ADS  Article  Google Scholar 

  21. 21.

    Y.S. Lin, S.F. Lin, W.C. Hsu, Semicond. Sci. Technol. 30, 015016 (2015)

    ADS  Article  Google Scholar 

  22. 22.

    Y.S. Lin, B.Y. Chen, Microelectron. Eng. 214, 100 (2019)

    Article  Google Scholar 

  23. 23.

    Y.S. Lin, W.H. Goa, IEICE Electron. Express 16, 20181046 (2019)

    Article  Google Scholar 

  24. 24.

    P.H. Lai, S.I. Fu, Y.Y. Tsai, C.W. Hung, C.H. Yen, H.M. Chung, W.C. Liu, J. Electrochem. Soc. 153, G632 (2006)

    Article  Google Scholar 

  25. 25.

    K. Ploog, J. Cryst. Growth 81, 304 (1987)

    ADS  Article  Google Scholar 

  26. 26.

    Y.S. Lin, B.Y. Chen, J. Electrochem. Soc. 153, G1005 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This investigation was supported by the Ministry of Science and Technology of the Republic of China (Contract No. MOST 108-2221-E-259-002-MY2 and MOST 110-2221-E-259-019).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yu-Shyan Lin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lin, YS., Huang, JJ. Linearity enhancement and noise reduction in a passivated AlGaAs/InGaAs/GaAs high-electron mobility transistor. J. Korean Phys. Soc. 79, 828–831 (2021). https://doi.org/10.1007/s40042-021-00299-5

Download citation

Keywords

  • HEMT
  • Passivation
  • GVS
  • Linearity
  • Minimum noise figure