Skip to main content
Log in

Study of the frustrated Ising model on a square lattice based on the exact density of states

  • Original Paper - General, Mathematical and Statistical Physics
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The square-lattice Ising model with nearest-neighbor (\(J_1\)) and next-nearest-neighbor (\(J_2\)) interactions is exactly unsolvable. The square-lattice \(J_1-J_2\) Ising model is frustrated for \(J_2<0\). For \(R=J_2/J_1=\pm 1/2\), the square-lattice \(J_1-J_2\) Ising model for \(J_2<0\) is the most frustrated, and its ground states are infinitely degenerate. The exact integer values for the density of states of the \(J_1-J_2\) Ising model for \(R=\pm 1/2\) are evaluated on \(L\times 2L\) square lattices with free boundary conditions in the L-direction and periodic boundary conditions in the 2L-direction up to \(L=12\) using an exact enumeration method. The total number of states is \(2^{288}\approx 5\times 10^{86}\) for \(L=12\), and counting all \(2^{288}\) states requires enormous computational work. The thermal scaling exponent \(y_t=1(=1/\nu )\) (where \(\nu \) is the correlation-length critical exponent) of the square-lattice \(J_1-J_2\) Ising model is obtained for \(J_2>0\) and \(R=\pm 1/2\), in agreement with the Ising universality class. The shift exponent \(\lambda =1.00\) is obtained for \(J_2>0\) and \(R=\pm 1/2\), equaling the thermal scaling exponent \(y_t\). On the other hand, the thermal scaling exponent \(y_t=2.0\) of the square-lattice \(J_1-J_2\) Ising model is obtained for \(J_2<0\) and \(R=\pm 1/2\), suggesting a first-order phase transition. The shift exponent \(\lambda =1.1\) is obtained for \(J_2<0\) and \(R=\pm 1/2\) and is different from the thermal scaling exponent \(y_t\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. L. Onsager, Phys. Rev. 65, 117 (1944)

    Article  ADS  MathSciNet  Google Scholar 

  2. M.H. Krieger, Constitutions of Matter: Mathematically Modeling the Most Everyday of Physical Phenomena (The University of Chicago Press, Chicago, 1996)

    MATH  Google Scholar 

  3. C. Domb, The Critical Point: A Historical Introduction to the Modern Theory of Critical Phenomena (Taylor and Francis, London, 1996)

    Book  Google Scholar 

  4. R.H. Swendsen, S. Krinsky, Phys. Rev. Lett. 43, 177 (1979)

    Article  ADS  Google Scholar 

  5. D.P. Landau, Phys. Rev. B 21, 1285 (1980)

    Article  ADS  Google Scholar 

  6. J. Oitmaa, J. Phys. A 14, 1159 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  7. A.N. Berker, K. Hui, Phys. Rev. B 48, 12393 (1993)

    Article  ADS  Google Scholar 

  8. H.J.W. Zandvliet, Europhys. Lett. 73, 747 (2006)

    Article  ADS  Google Scholar 

  9. J.L. Monroe, S.-Y. Kim, Phys. Rev. E 76, 021123 (2007)

    Article  ADS  Google Scholar 

  10. A. Nußbaumer, E. Bittner, W. Janke, Europhys. Lett. 78, 16004 (2007)

    Article  ADS  Google Scholar 

  11. A. Kalz, A. Honecker, S. Fuchs, T. Pruschke, Eur. Phys. J. B 65, 533 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  12. J.H. Lee, H.S. Song, J.M. Kim, S.-Y. Kim, J. Stat. Mech. 2010, P03020 (2010)

    Google Scholar 

  13. S.-Y. Kim, Phys. Rev. E 81, 031120 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  14. Y. Boughaleb, M. Nouredine, M. Snina, R. Nassif, M. Bennai, Phys. Res. Int. 2010, 284231 (2010)

    Article  Google Scholar 

  15. S. Jin, A. Sen, A.W. Sandvik, Phys. Rev. Lett. 108, 045702 (2012)

    Article  ADS  Google Scholar 

  16. A. Strycharski, Z. Koza, J. Phys. A 46, 295003 (2013)

    Article  MathSciNet  Google Scholar 

  17. Y. Yoneta, A. Shimizu, Phys. Rev. B 99, 144105 (2019)

    Article  ADS  Google Scholar 

  18. S.-Y. Kim, R.J. Creswick, Phys. Rev. Lett. 81, 2000 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  19. S.-Y. Kim, R.J. Creswick, Comput. Phys. Commun. 121, 26 (1999)

    ADS  Google Scholar 

  20. S.-Y. Kim, Phys. Rev. Lett. 93, 130604 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  21. C.N. Yang, T.D. Lee, Phys. Rev. 87, 404 (1952)

    Article  ADS  MathSciNet  Google Scholar 

  22. C.N. Yang, T.D. Lee, Phys. Rev. 87, 410 (1952)

    Article  ADS  MathSciNet  Google Scholar 

  23. M.E. Fisher, in Lectures in Theoretical Physics, vol. 7c, ed. by W.E. Brittin (University of Colorado Press, Boulder, CO, 1965), p. D1

  24. I. Bena, M. Droz, A. Lipowski, Int. J. Mod. Phys. B 19, 4269 (2005). (and references therein)

    Article  ADS  Google Scholar 

  25. L.C. de Albuquerque, N.A. Alves, D. Dalmazi, Nucl. Phys. B 580, 739 (2000)

    Article  ADS  Google Scholar 

  26. W. Janke, R. Kenna, J. Stat. Phys. 102, 1211 (2001)

    Article  Google Scholar 

  27. N.A. Alves, U.H.E. Hansmann, Phys. A 292, 509 (2001)

    Article  Google Scholar 

  28. W. Janke, R. Kenna, Phys. Rev. B 65, 064110 (2002)

    Article  ADS  Google Scholar 

  29. S.-Y. Kim, Nucl. Phys. B 637, 409 (2002)

    Article  ADS  Google Scholar 

  30. M. D’Elia, M.-P. Lombardo, Phys. Rev. D 67, 014505 (2003)

    Article  ADS  Google Scholar 

  31. S.-Y. Kim, Nucl. Phys. B 705, 504 (2005)

    Article  ADS  Google Scholar 

  32. S.-Y. Kim, Phys. Rev. E 74, 011119 (2006)

    Article  ADS  Google Scholar 

  33. P. Tong, X. Liu, Phys. Rev. Lett. 97, 017201 (2006)

    Article  ADS  Google Scholar 

  34. S.-Y. Kim, C.-O. Hwang, J.M. Kim, Nucl. Phys. B 805, 441 (2008)

    Article  ADS  Google Scholar 

  35. P.R. Crompton, Nucl. Phys. B 810, 542 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  36. J.H. Lee, S.-Y. Kim, J. Lee, J. Chem. Phys. 133, 114106 (2010)

    Article  ADS  Google Scholar 

  37. J.H. Lee, S.-Y. Kim, J. Lee, J. Chem. Phys. 135, 204102 (2011)

    Article  ADS  Google Scholar 

  38. J.H. Lee, S.-Y. Kim, J. Lee, Phys. Rev. E 86, 011802 (2012)

    Article  ADS  Google Scholar 

  39. J.H. Lee, S.-Y. Kim, J. Lee, Phys. Rev. E 87, 052601 (2013)

    Article  ADS  Google Scholar 

  40. J. Lee, Phys. Rev. Lett. 110, 248101 (2013)

    Article  ADS  Google Scholar 

  41. C.-N. Chen, Y.-H. Hsieh, C.-K. Hu, Europhys. Lett. 104, 20005 (2013)

    Article  ADS  Google Scholar 

  42. J.H. Lee, S.-Y. Kim, J. Lee, AIP Adv. 5, 127211 (2015)

    Article  ADS  Google Scholar 

  43. S.-Y. Kim, J. Korean Phys. Soc. 67, 1517 (2015)

    Article  ADS  Google Scholar 

  44. E.J. Janse van Rensburg, J. Stat. Mech. 2017, 033208 (2017)

    Article  Google Scholar 

  45. S.-Y. Kim, J. Korean Phys. Soc. 72, 646 (2018)

    Article  ADS  Google Scholar 

  46. S.-Y. Kim, W. Kwak, J. Korean Phys. Soc. 72, 653 (2018)

    Article  ADS  Google Scholar 

  47. M. Knezevic, M. Knezevic, J. Phys. A 52, 125002 (2019)

    Article  ADS  Google Scholar 

  48. C.-N. Chen, C.-K. Hu, N.S. Izmailian, M.-C. Wu, Phys. Rev. E 99, 012102 (2019)

    Article  ADS  Google Scholar 

  49. S.-Y. Kim, J. Korean Phys. Soc. 77, 630 (2020)

    Article  ADS  Google Scholar 

  50. Y. Su, H. Liang, X. Wang, Phys. Rev. A 102, 052423 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  51. R. Bulirsch, J. Stoer, Numer. Math. 6, 413 (1964)

    Article  MathSciNet  Google Scholar 

  52. M. Henkel, A. Patkos, J. Phys. A 20, 2199 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  53. M. Henkel, G. Schutz, J. Phys. A 21, 2617 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  54. A.E. Ferdinand, M.E. Fisher, Phys. Rev. 185, 832 (1969)

    Article  ADS  Google Scholar 

  55. M.N. Barber, in Phase Transitions and Critical Phenomena, vol. 8, ed. by C. Domb, J.L. Lebowitz (Academic Press, New York, 1983), p. 145

  56. M.E. Fisher, A.N. Berker, Phys. Rev. B 26, 2507 (1982)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant Number: NRF-2017R1D1A3B06035840).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Yeon Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, SY. Study of the frustrated Ising model on a square lattice based on the exact density of states. J. Korean Phys. Soc. 79, 894–902 (2021). https://doi.org/10.1007/s40042-021-00296-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00296-8

Keywords

Navigation