Skip to main content
Log in

Monte Carlo simulation of base damage as a function of linear energy transfer for applications in radiation biophysics

  • Original Paper - Cross-Disciplinary Physics and Related Areas of Science and Technology
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

This work presents simulations of the concentration of clustered DNA damage of various complexities induced by monoenergetic electrons, protons, and alpha particles within the range of linear energy transfer (LET). Using Geant4-DNA tool, we measured the LET in liquid water and calculated the frequency of base damage around single strand breaks, double strand breaks, and complex strand breaks. The protons and the alpha particles depended greatly on LET, which affected the concentration of base damage. For alpha particles, at 206.40 keV/μm, a high LET region was irradiated, the number of cases with more than 6 base damages was increased by about 70 times compared to the low LET region. The data indicate that high-LET radiation is likely to be much more effective in producing concentrated clusters of damage, and that having a quantitative estimate of the extent of this type of damage is important. These lesions are responsible for most of the significant cellular effects associated with ionizing radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.M. Elkind, Cancer 56, 2351 (1985)

    Article  Google Scholar 

  2. I.G. Panyutin, R.D. Neumann, Nucl. Acids Res. 22, 4979 (1994)

    Article  Google Scholar 

  3. W.R. Holley, A. Chatterjee, J.L. Magee, Radiat Res. 121, 161 (1990)

    Article  ADS  Google Scholar 

  4. D. Goodhead, D. Brenner, Phys. Med. Biol. 28, 485 (1983)

    Article  Google Scholar 

  5. A. Chatterjee, W.R. Holley, Adv. Space Res. 12, 33 (1992)

    Article  ADS  Google Scholar 

  6. A. Chatterjee, W.R. Holley, Radiat. Prot. Dosim. 31, 241 (1990)

    Article  Google Scholar 

  7. B. Rydberg, Radiat Res. 145, 200 (1996)

    Article  ADS  Google Scholar 

  8. V. Moiseenko, Radiat. Environ. Biophys. 37, 167 (1998)

    Article  Google Scholar 

  9. H. Nikjoo, P.O. Neill, D.T. Goodhead, M. Terrissol, Int. J. Radiat. Biol. 71, 467 (1997)

    Article  Google Scholar 

  10. H. Nikjoo, S. Uehara, W.E. Wilson, M. Hoshi, D.T. Goodhead, Int. J. Radiat. Biol. 73, 355 (1998)

    Article  Google Scholar 

  11. S. Incerti, M. Douglass, S. Penfold, S. Guatelli, E. Bezak, Phys. Med. 32, 1187 (2016)

    Article  Google Scholar 

  12. S. Incerti, I. Kyriakou, M.A. Bernal, M.C. Bordage et al., Med. Phys. 45, 722 (2018)

    Article  Google Scholar 

  13. N. Lampe, M. Karamitros, V. Breton, J.M.C. Brown, Phys Med. 48, 146 (2018)

    Article  Google Scholar 

  14. V.V. Moiseenko, R.N. Hamm, A.J. Waker, W.V. Prestwich, Radiat. Environ. Biophys. 40, 23 (2001)

    Article  Google Scholar 

  15. G.A.P. Cirrone, G. Cuttone, S.E. Mazzaglia, F. Romano et al., Prog. Nucl. Energy. 2, 207 (2011)

    Google Scholar 

  16. E. Choi, K.S. Chon, M.G. Yoon, Radiat. Eff. Deffect S. 11, 1042 (2020)

    Article  ADS  Google Scholar 

  17. S. Seltzer, J. Femandes, F. Salvat et al, ICRU Report 90 (2016)

  18. Z. Francis, S. Incerti, V. Ivanchenko, C. Champion, M. Karamitros et al., Phys. Med. Biol. 57, 209 (2011)

    Article  Google Scholar 

  19. D.T. Goodhead, H. Nikjoo, Int. J. Radiat. Biol. 55, 513 (1989)

    Article  Google Scholar 

  20. Z. Francis, C. Villagrasa, I. Clairand, Comput. Methods Prog. Biomed. 101, 265 (2011)

    Article  Google Scholar 

  21. W. Friedland, M. Dingfelder, P. Jacob, H.G. Paretzke, Radiat. Phys. Chem. 72, 279 (2005)

    Article  ADS  Google Scholar 

  22. D.J. Thomas, Radiat. Prot. Dosim. 150, 550 (2012)

    Article  Google Scholar 

  23. H. Nikjoo, P. Oneill, M. Terrisol, D.T. Goodhead, Radiat. Environ. Biophys. 38, 31 (1999)

    Article  Google Scholar 

  24. K.P. Chatzipapas, P. Papadimitroulas, M. Obeidat, K.A. Mcconnell et al., Med. Phys. 46, 405 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Technology development Program (S3056527) funded by the Ministry of SMEs and Startups (MSS, Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwon Su Chon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, E., Kim, Y. & Chon, K.S. Monte Carlo simulation of base damage as a function of linear energy transfer for applications in radiation biophysics. J. Korean Phys. Soc. 79, 973–979 (2021). https://doi.org/10.1007/s40042-021-00290-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00290-0

Keywords

Navigation