Skip to main content
Log in

Logarithmic Lagrangian matter density, unimodular gravity-like and accelerated expansion with a negative cosmological constant

  • Letter
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We present a new viable modified theory of gravity in which the matter sector is characterized by a logarithmic Lagrangian density. The modified Einstein’s field equations are derived, and they are characterized by the emergence of an effective gravitational coupling constant and an effective negative cosmological constant both coupled to the Lagrangian of matter. Applied to the Friedmann-Robertson-Walker cosmological framework, it leads to motivating phenomenology. In particular, the universe is free from the initial singularity, and a unified description of the early inflationary phase, the succeeding non-accelerating, matter-dominated expansion, and then the transition to a late-time accelerating phase is obtained as well. Moreover, the effective dark energy sector can be quintessence, yet the universe starts contracting if the phantom divide-line is crossed. The model is confronted with observations that agree with recent astronomical data. Moreover, the model gives rise to Einstein’s field equations which resemble the equations obtained in unimodular gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The author confirms the absence of shared data.

References

  1. E. Komatsu et al., Five-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation. Astrophys. J. Suppl. 180, 330 (2009)

    Article  ADS  Google Scholar 

  2. U.Y. Divya Prasanthi, A. Aditya, Anisotropic Renyi holographic dark energy models in general relativity. Res. Phys. 17, 103010 (2020)

    Google Scholar 

  3. B. Pourhassan, E.Q. Kahya, Extended Chaplygin gas model. Res. Phys. 4, 101–102 (2014)

    MATH  Google Scholar 

  4. V. Vinutha, K. Sri Kavya, Dynamics of Bianchi cosmological model in Rn gravity. Res. Phys. 23, 103863 (2021)

    Google Scholar 

  5. T.P. Sotiriou, V. Faraoni, f(R) theories of gravity. Rev. Mod. Phys. 82, 451–497 (2010)

    Article  ADS  MATH  Google Scholar 

  6. M. Sharif, M. Zubair, Thermodynamics in f(R, T) theory of gravity. J. Cosm. Astropart. Phys. 1203, 028 (2012)

    Article  ADS  Google Scholar 

  7. L.K. Sharma, A.K. Yadav, P.K. Sahoo, B.K. Singh, Non-minimal matter-geometry coupling in Bianchi I space-time. Res. Phys. 10, 738–742 (2018)

    Google Scholar 

  8. M.R. Setare, E.N. Saridakis, Non-minimally coupled canonical, phantom and quintom models of holographic dark energy. Phys. Lett. B 671, 331–338 (2009)

    Article  ADS  Google Scholar 

  9. R.A. El-Nabulsi, Scalar tensor cosmology with kinetic, Gauss-Bonnet and nonminimal derivative couplings and supersymmetric loop corrected potential. Comm. Theor. Phys. 71, 831–832 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. V. Binbay, F.F. Binbay, Would an alternative gravity theory developed from an improved gravitational action approach includes negative kinetic energy dynamic degrees of freedom? Res. Phys. 10, 145–149 (2018)

    Google Scholar 

  11. Z.E. Musielak, Standard and non-standard Lagrangians for dissipative dynamical systems with variable coefficients. J. Phys. A Math. Theor. 41, 055205 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Z.E. Musielak, General conditions for the existence of non-standard Lagrangians for dissipative dynamical systems. Chaos Solitons Fractals 42, 2645–2652 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Z.E. Musielak, N. Davachi, M. Rosario-Franco, Lagrangians, gauge transformations and Lie groups for semigroup of second-order differential equations. J. Appl. Math. (2020). https://doi.org/10.1155/2020/3170130

    Article  Google Scholar 

  14. R.A. El-Nabulsi, Nonlinear dynamics with nonstandard Lagrangians. Qual. Theor. Dyn. Syst. 12, 273–329 (2012)

    Article  MATH  Google Scholar 

  15. R.A. El-Nabulsi, T.A. Soulati, H. Rezazadeh, Non-standard complex Lagrangian dynamics. J. Adv. Res. Dyn. Cont. Syst. 5, 50–62 (2013)

    MathSciNet  Google Scholar 

  16. R.A. El-Nabulsi, Non-standard fractional Lagrangians. Nonlinear Dyn. 74, 381–394 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. R.A. El-Nabulsi, Nonstandard Lagrangian cosmology. J. Theor. Appl. Phys. 7, 58 (2013)

    Article  ADS  Google Scholar 

  18. Y. Zhang, X.S. Zhou, Noether theorem and its inverse for nonlinear dynamical systems with nonstandard Lagrangians. Nonlinear Dyn. 84, 1867–1876 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. J. Jiang, Y. Feng, S. Xu, Noether’s symmetries and its inverse for fractional Logarithmic Lagrangian systems. J. Syst. Sci. Inform. 7, 90–98 (2019)

    Google Scholar 

  20. A. Saha, B. Talukdar, Inverse variational problem for non-standard Lagrangians. Rep. Math. Phys. 73, 299–309 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. J. Song, Y. Zhang, Noether’s theorems for dynamical systems of two kinds of non-standard Hamiltonians. Acta Mech. 229, 285–297 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. X.S. Zhou, Y. Zhang, Routh method of reduction for dynamical systems with non-standard Lagrangians. Chin. Quart. Mech. 37, 15–21 (2016)

    Google Scholar 

  23. Y. Zhang, X.-P. Wang, Mei symmetry and invariants of quasi-fractional dynamical systems with non-standard Lagrangians. Symmetry 11, 1061 (2019)

    Article  Google Scholar 

  24. R.A. El-Nabulsi, Gravitational field as a pressure force from logarithmic Lagrangians and non-standard Hamiltonians: the case of stellar halo of Milky Way. Comm. Theor. Phys. 69, 233 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. V.V. Kiselev, Vector field as a quintessence partner. Class. Quantum Gravit. 21, 3323 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. G. Ellis, R. Maartens, M. MacCallum, Causality and the speed of sound. Gen. Relativ. Gravit. 39, 1651–1660 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. L. Visinelli, S. Vagnozzi, U. Danielsson, Revisiting a negative cosmological constant from low-redshift data. Symmetry 11, 1035 (2019)

    Article  Google Scholar 

  28. K. Maeda, N. Ohta, Cosmic acceleration with a negative cosmological constant in higher dimensions. J. High Energy Phys. 2014, 95 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. J. B. Hartle, S. W. Hawking, T. Hertog, Accelerated expansion with negative , arXiv: 1205.3807

  30. R.A. El-Nabulsi, Phase transitions in the early universe with negatively induced supergravity cosmological constant. Chin. Phys. Lett. 23, 1124 (2006)

    Article  Google Scholar 

  31. R.A. El-Nabulsi, Effective cosmological constant from supergravity arguments and non-minimal coupling. Phys. Lett. B 619, 26–29 (2005)

    Article  ADS  Google Scholar 

  32. R.A. El-Nabulsi, Spontaneous symmetry breaking in the early universe with a negative temperature and a broken Lorentz symmetry. Proc. Natl Acad. Sci. India Sect. A Phys. Sci. 85, 395–399 (2015)

    Article  MathSciNet  Google Scholar 

  33. R. Calderon, R. Gannouji, B. L’Huillier, D. Polarski, Negative cosmological constant in the dark sector? Phys. Rev. D 103, 023506 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  34. S. Kumar, Observational constraints on Hubble constant and deceleration parameter in power-law cosmology. Mon. Not. R. Astron. Soc. 422, 2532–2538 (2012)

    Article  ADS  Google Scholar 

  35. A.A. Mamon, Constraints on a generalized deceleration parameter from cosmic chronometers. Mod. Phys. Lett. A 33, 1850056 (2018)

    Article  ADS  Google Scholar 

  36. S. Khakshournia, A note on the generalized Friedmann equations for a thick brane. Gen. Relativ. Gravit. 40, 1791–1796 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. W. Buchmuller, N. Dragon, Einstein gravity from restricted coordinate invariance. Phys. Lett. B 207, 292–294 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  38. G.F. Ellis, H. van Elst, J. Murugan, J.-P. Uzan, On the trace-free Einstein equations as a viable alternative to general relativity. Class. Quant. Gravit. 28, 225007 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. G.F.R. Ellis, The trace-Free Einstein equations and inflation. Gen. Relativ. Gravit. 46, 1619 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. M. Shaposhnikov, D. Zenhausern, Scale invariance, unimodular gravity and dark energy. Phys. Lett. B 671, 187–192 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  41. A.O. Barvinsky, A.Y. Kamenshchik, Darkness without dark matter and dark energy-generalized unimodular gravity. Phys. Lett. B 774, 59–63 (2017)

    Article  ADS  MATH  Google Scholar 

  42. S.-W. Kim, Creation and annihilation of a wormhole in a matter-dark universe. J. Korean Phys. Soc. (2021). https://doi.org/10.1007/s40042-021-00087-1

    Article  Google Scholar 

  43. J.-W. Lee, Zero cosmological constant and nonzero dark energy from the holographic principle. J. Korean Phys. Soc. 63, 1088–1093 (2013)

    Article  ADS  Google Scholar 

  44. S. Kouwn, P. Oh, Dark energy with logarithmic cosmological fluid. J. Korean Phys. Soc. 65, 814–820 (2014)

    Article  ADS  Google Scholar 

  45. H.-C. Kim, A new variable in scalar cosmology with an exponential potential. J. Korean Phys. Soc. 63, 1675–1680 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rami Ahmad El-Nabulsi.

Ethics declarations

Conflict of interest

The author declares that he has no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Nabulsi, R.A. Logarithmic Lagrangian matter density, unimodular gravity-like and accelerated expansion with a negative cosmological constant. J. Korean Phys. Soc. 79, 345–349 (2021). https://doi.org/10.1007/s40042-021-00233-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00233-9

Keywords

Navigation