Skip to main content
Log in

Electronic states of graphene quantum dots induced by nanobubbles

  • Original Paper
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We analyze the effects of the strain-induced pseudo-magnetic fields (PMFs) originating from nanobubbles (NBs) to examine the possibility for a graphene quantum dot (QD) created by strain engineering. We study the electronic structures and quantum transport properties of graphene subjected to an NB, and report that the presence of PMFs facilitates a strong confinement of Dirac fermions. A circular geometry of the NB locally establishes the characteristic PMFs with \(C_{3}\) symmetry, resulting in threefold localized states according to the given symmetry. We demonstrate the formation of a graphene QD induced by the NB via the conductance resonances calculated through the NB between opposite quantum Hall edge channels. Analyzing the scattering wavefunctions for the resonances, we confirm the existence of ground and excited states in the graphene QD. In addition, we show a possible valley-polarization in the graphene QD, as a consequence of quantum interference between symmetric and anti-symmetric valley-coupled modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183–191 (2007)

    Article  ADS  Google Scholar 

  2. D.B. Farmer et al., Nano Lett. 9, 4474–4478 (2009)

    Article  ADS  Google Scholar 

  3. C.R. Dean et al., Nat. Nanotechnol. 5, 722–726 (2010)

    Article  ADS  Google Scholar 

  4. W. Gannet et al., App. Phys. Lett. 98, 242105 (2011)

    Article  ADS  Google Scholar 

  5. P.J. Zomer, S.P. Dash, N. Tombros, B.J. van Wees, App. Phys. Lett. 99, 232104 (2011)

    Article  ADS  Google Scholar 

  6. W. Fu et al., Nanoscale 5, 12104–12110 (2013)

    Article  ADS  Google Scholar 

  7. L. Banszerus et al., Sci. Adv. 1, e1500222 (2015)

    Article  ADS  Google Scholar 

  8. D. Gunlyke, H.M. Lawler, C.T. White, Phys. Rev. B 75, 085418 (2007)

    Article  ADS  Google Scholar 

  9. W.-K. Tse, E.H. Hwang, S.D. Sarma, Appl. Phys. Lett. 93, 023128 (2008)

    Article  ADS  Google Scholar 

  10. S. Masubuchi et al., Phys. Rev. Lett. 109, 036601 (2012)

    Article  ADS  Google Scholar 

  11. A.K. Singh, G. Auton, E. Hill, A. Song, Carbon 84, 124–129 (2015)

    Article  Google Scholar 

  12. Y. Zhang, Y.-W. Tan, H.L. Stormer, P. Kim, Nature (London) 438, 201–204 (2005)

    Article  ADS  Google Scholar 

  13. J.R. Williams, L. DiCarlo, C.M. Marcus, Science 317, 638–641 (2007)

    Article  ADS  Google Scholar 

  14. M.I. Katsnelson, K.S. Novoselov, A.K. Geim, Nat. Phys. 2, 620–625 (2006)

    Article  Google Scholar 

  15. C.W.J. Beenakker, Rev. Mod. Phys. 80, 1337 (2008)

    Article  ADS  Google Scholar 

  16. N. Stander, B. Huard, D. Goldharber-Gordon, Phys. Rev. Lett. 102, 026807 (2009)

    Article  ADS  Google Scholar 

  17. J.M. Pereira, F.M. Peeters, A. Chaves, G.A. Farias, Semicon. Sci. Tech. 25, 033002 (2010)

    Article  ADS  Google Scholar 

  18. P.E. Allain, J.N. Fuchs, Eur. Phys. J. 83, 301 (2011)

    Article  ADS  Google Scholar 

  19. F. Sols, F. Guinea, A.H.C. Neto, Phys. Rev. Lett. 99, 166803 (2007)

    Article  ADS  Google Scholar 

  20. K.A. Ritter, J.W. Lyding, Nat. Mater. 8, 235–242 (2009)

    Article  ADS  Google Scholar 

  21. C. Stampfer et al., Phys. Rev. Lett. 102, 056403 (2009)

    Article  ADS  Google Scholar 

  22. S. Wang et al., Nano Lett. 17, 4277–4283 (2017)

    Article  ADS  Google Scholar 

  23. J.M. Pereira, P. Vasilopoulos, F.M. Peeters, Nano Lett. 7, 946–949 (2007)

    Article  ADS  Google Scholar 

  24. J. Velasco Jr. et al., Nano Lett. 18, 5104–5110 (2018)

    Article  ADS  Google Scholar 

  25. A. Kurzmann et al., Phys. Rev. Lett. 123, 026803 (2019)

    Article  ADS  Google Scholar 

  26. L. Benazerus et al., Nano Lett. 20, 7709–7715 (2020)

    Article  ADS  Google Scholar 

  27. K. Todd, H.-T. Chou, S. Amasha, D. Goldharber-Gordon, Nano Lett. 9, 416–421 (2009)

    Article  ADS  Google Scholar 

  28. C. Volk et al., Nat. Commun. 4, 1753 (2013)

    Article  ADS  Google Scholar 

  29. R. Yan et al., RSC Avd. 4, 13097–23106 (2014)

    Google Scholar 

  30. J.B. Oostinga et al., Phys. Rev. B 81, 193408 (2010)

    Article  ADS  Google Scholar 

  31. M.-W. Lin et al., Phys. Rev. B 84, 125411 (2011)

    Article  ADS  Google Scholar 

  32. A. Yazdanpanah et al., IEEE Trans. Electron Dev. 59, 433–440 (2012)

    Article  ADS  Google Scholar 

  33. J. Baringhaus et al., Appl. Phys. Lett. 106, 043109 (2015)

    Article  ADS  Google Scholar 

  34. J. Aprojanz et al., Nat. Commun. 9, 4426 (2018)

    Article  ADS  Google Scholar 

  35. J.B. Oostinga et al., Nat. Mater. 7, 151–157 (2008)

    Article  ADS  Google Scholar 

  36. S.D. Sarma, E.H. Hwang, E. Rossi, Phys. Rev. B 81, 161407(R) (2010)

    Article  ADS  Google Scholar 

  37. H. Zhou et al., Nat. Commun. 4, 2096 (2013)

    Article  ADS  Google Scholar 

  38. S. Engels et al., Phys. Rev. Lett. 113, 126801 (2014)

    Article  ADS  Google Scholar 

  39. C. Lee, X. Wei, J.W. Kysar, J. Hone, Science 321, 385–388 (2008)

    Article  ADS  Google Scholar 

  40. E. Cadelano et al., Phys. Rev. Lett. 102, 235502 (2009)

    Article  ADS  Google Scholar 

  41. N. Levy et al., Science 329, 544–547 (2010)

    Article  ADS  Google Scholar 

  42. E.V. Castro, M.A. Cazalilla, M.A.H. Vozmediano, Phys. Rev. B 96, 241405(R) (2015)

    Article  ADS  Google Scholar 

  43. S.-Y. Li, Y. Su, Y.-N. Ren, L. He, Phys. Rev. Lett. 124, 106802 (2020)

    Article  ADS  Google Scholar 

  44. T. Low, F. Guinea, Nano Lett. 10, 3551–3554 (2010)

    Article  ADS  Google Scholar 

  45. Z. Wu et al., Phys. Rev. Lett. 106, 176802 (2011)

    Article  ADS  Google Scholar 

  46. Y. Jiang et al., Phys. Rev. Lett. 110, 046601 (2013)

    Article  ADS  Google Scholar 

  47. J. Wang, K.S. Chan, Z. Lin, Appl. Phys. Lett. 104, 013105 (2014)

    Article  ADS  Google Scholar 

  48. V. Torres, P. Silva, E.A.T. de Souza, L.A. Silva, D.A. Bahamon, Phys. Rev. B 100, 205411 (2019)

    Article  ADS  Google Scholar 

  49. C.-C. Hsu, M.L. Teague, J.-Q. Wang, N.-C. Yeh, Sci. Adv. 6, eaat9488 (2020)

    Article  ADS  Google Scholar 

  50. N. Myoung, H. Choi, H.C. Park, Carbon 157, 578–582 (2020)

    Article  Google Scholar 

  51. J. Lu, A.H.C. Neto, K.P. Loh, Nat. Commun. 3, 823 (2012)

    Article  ADS  Google Scholar 

  52. H. Ghorbanfekr-Kalashami, K.S. Vasu, R.R. Nair, F.M. Peeters, M. Neek-Amal, Nat. Commun. 8, 15844 (2017)

    Article  ADS  Google Scholar 

  53. H. Ochoa, E.V. Castro, M.I. Katsnelson, F. Guinea, Phys. E 44, 963–966 (2012)

    Article  Google Scholar 

  54. A.D. Smith et al., ACS Nano 10, 9879–9886 (2016)

    Article  Google Scholar 

  55. R. Roldán, A. Cstallanos-Gonez, E. Cappeluti, F. Guinea, J. Phys. Condens. Matter 27, 313201 (2015)

    Article  ADS  Google Scholar 

  56. D.G. Papageorgiou et al., Nanoscale 12, 2228–2267 (2020)

    Article  Google Scholar 

  57. N.N. Klimov et al., Science 336, 1557–1561 (2012)

    Article  ADS  Google Scholar 

  58. M.R. Masir, D. Moldovan, F.M. Peeters, Solid State Commun. 175–176, 76–82 (2013)

    Article  Google Scholar 

  59. R. Carillo-Bastos, M. Ochoa, S.A. Zavala, F. Mireles, Phys. Rev. B 98, 165436 (2018)

    Article  ADS  Google Scholar 

  60. C.W. Groth, M. Wimmer, A.R. Akhmerov, X. Waintal, New. J. Phys. 16, 063065 (2014)

    Article  ADS  Google Scholar 

  61. N. Myoung, J.-W. Ryu, H.C. Park, S.J. Lee, S. Woo, Phys. Rev. B 100, 045427 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Research Foundation of Korea (NRF-2019R1F1A1051215; NRF2016-R1D1A1B04-935798), Project Code (IBS-R024-D1), and Chosun University (2020). The authors thank Mr. Rasmussen for careful editing of English of the paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seung Joo Lee or Nojoon Myoung.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, H.C., Son, M., Lee, S.J. et al. Electronic states of graphene quantum dots induced by nanobubbles. J. Korean Phys. Soc. 78, 1208–1214 (2021). https://doi.org/10.1007/s40042-021-00196-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00196-x

Keywords

Navigation