Skip to main content
Log in

Optical properties of transition-metal oxide thin films deposited using a pulsed laser

  • Original Paper
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Transition-metal oxide thin films of V2O5, ZrO2, and CeO2 were fabricated on MgO single-crystal substrates using a pulsed-laser deposition technique. The linear optical transmission spectra were measured at room temperature, and the data showing a fringe pattern in the transparent spectral region were used to determine the linear refractive indices of the films. The values of the linear refractive indices decrease with increasing wavelength, and the relationship could be well explained using Wemple’s theory. The third-order nonlinear optical properties of the films were determined using a single-beam z-scan method at a wavelength of 532 nm. The results showed that the prepared V2O5 film exhibited a fast third-order nonlinear optical response, with the nonlinear absorption coefficient and the nonlinear refractive index being 3.97 × 10–10 m/W and 4.55 × 10–17 m2/W, respectively, which are larger than those for the ZrO2 and the CeO2 films. The metal–oxygen bond lengths based on the bond-orbital theory could be used to explain these results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H. Takacs, B. Viala, J.H. Tortai, V. Herman, F. Duclairoir, J. Appl. Phys. 119, 093907 (2016)

    Article  ADS  Google Scholar 

  2. S. Fraser, X. Zheng, L. Qiu, D. Li, B. Jia, Appl. Phys. Lett. 107, 031112 (2015)

    Article  ADS  Google Scholar 

  3. Y.S. Tamgadge, S.S. Talwatkar, A.L. Sunatkari, V.G. Pahurkar, G.G. Muley, Thin Solid Films 595, 48 (2015)

    Article  ADS  Google Scholar 

  4. Jun Bin Ko, Sang Chul Lim, Seong Hyun Kim. J. Korean Phys. Soc. 75, 236 (2019)

    Article  Google Scholar 

  5. S. Debrus, J. Lafait, M. May, N. Pincon, D. Prot, C. Sella, J. Venturini, J. Appl. Phys. 88, 4469 (2000)

    Article  ADS  Google Scholar 

  6. W.T. Wang, D.Y. Guan, G. Yang, G.Z. Yang, Y.L. Zhou, H.B. Lu, Z.H. Chen, Thin Solid Films 471, 86 (2005)

    Article  ADS  Google Scholar 

  7. R.C. Miller, Appl. Phys. Lett. 5, 17 (1964)

    Article  ADS  Google Scholar 

  8. C.C. Wang, Phys. Rev. B 2, 2045 (1970)

    Article  ADS  Google Scholar 

  9. T. Hashimoto, T. Yoko, S. Sakka, Bull. Chem. Soc. Jpn. 67, 653 (1994)

    Article  Google Scholar 

  10. T. Hashimoto, T. Yoko, S. Sakka, J. Ceram. Soc. Jpn. 101, 64 (1993)

    Article  Google Scholar 

  11. M.E. Lines, Phys. Rev. B 43, 11978 (1991)

    Article  ADS  Google Scholar 

  12. D.K. Smith, H.W. Newkirk, Acta Crystallogr. 18, 983 (1965)

    Article  Google Scholar 

  13. M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan, E.W. van Stryland, IEEE J. Quantum Electron. 26, 760 (1990)

    Article  ADS  Google Scholar 

  14. M. Sheik-Bahae, A.A. Said, E.W. van Stryland, Opt. Lett. 14, 955 (1989)

    Article  ADS  Google Scholar 

  15. W. Wang, Y. Sun, Z. Dai, D. Guan, Acta Opt. Sin. 26, 1 (2006)

    Google Scholar 

  16. W. Wang, C. Shi, X. Su, H. Xing, J. Zhang, Mater. Res. Bull. 41, 2018 (2006)

    Article  Google Scholar 

  17. R. Swanepoel, J. Phys. E Sci. Instrum. 16, 1214 (1983)

    Article  ADS  Google Scholar 

  18. S.H. Wemple, J. Chem. Phys. 67, 2151 (1977)

    Article  ADS  Google Scholar 

  19. M. Yin, H.P. Li, S.H. Tang, W. Ji, Appl. Phys. B 70, 587 (2000)

    Article  ADS  Google Scholar 

  20. P.B. Chapple, J. Staromlynska, J.A. Hermann, T.J. Mckay, J. Nonlinear Opt. Phys. Mater. 6, 251 (1991)

    Article  ADS  Google Scholar 

  21. W. Wang, Z. Dai, Y. Sun, Y. Sun, D. Guan, Appl. Surf. Sci. 250, 268 (2005)

    Article  ADS  Google Scholar 

  22. G. Yang, W. Wang, L. Yan, H. Lu, G. Yang, Z. Chen, Opt. Commun. 209, 445 (2002)

    Article  ADS  Google Scholar 

  23. M.E. Lines, Phys. Rev. B 41, 3383 (1990)

    Article  ADS  Google Scholar 

  24. I. Tanahashi, Y. Manabe, T. Tohda, S. Sasaki, A. Nakamura, J. Appl. Phys. 79, 1244 (1996)

    Article  ADS  Google Scholar 

  25. K.P. Yuen, M.F. Law, K.W. Yu, P. Sheng, Phys. Rev. E 56, R1322 (1997)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Natural Science Foundation of China under Grand No. 10704065.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weitian Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, L., Wang, R. & Wang, W. Optical properties of transition-metal oxide thin films deposited using a pulsed laser. J. Korean Phys. Soc. 79, 191–196 (2021). https://doi.org/10.1007/s40042-021-00190-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00190-3

Keywords

Navigation