Skip to main content
Log in

Optical frequency comb transfer through 820-m-scale atmospheric turbulence for low-noise radiofrequency distribution

  • Original Paper
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Distribution of a high-stability clock signal is an important topic for many applications. Recently, optical frequency comb transfer through outdoor atmosphere has become a valuable tool for the clock distribution due to its versatility. To extend the benefits of comb-based open-air clock distribution, one-way radiofrequency (RF) transfer with a single optical frequency comb is an attractive approach due to its simplicity and broad application span. Here, we transfer an L-band RF signal across 820-m-scale outdoor beam path with a single optical frequency comb. We measured the absolute phase noise of the transferred RF signal, and analyzed it with Kolmogorov’s f −8/3 power law and Taylor’s hypothesis of frozen turbulence. We also show that the residual-phase noise of the transferred RF signal can be suppressed to the femtosecond regime by a delay-locked loop. Our results may benefit remote ranging at km-range, inter-building clock distribution, and optical communication through aerial drones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of datas and materials

Additional data related to this paper may be requested from the author.

References

  1. S.A. Diddams, The evolving optical frequency comb. J. Opt. Soc. Am. B 27, B51–B62 (2010)

    Article  Google Scholar 

  2. J. Kim, Y. Song, Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications. Adv. Opt. Photonics 8, 465–540 (2016)

    Article  ADS  Google Scholar 

  3. J. Ye, H. Schnatz, L.W. Hollberg, Optical frequency combs: from frequency metrology to optical phase control. IEEE J. Sel. Top. Quantum Electron. 9, 1041–1058 (2003)

    Article  ADS  Google Scholar 

  4. D. Kwon, I. Jeon, W.K. Lee, M.S. Heo, J. Kim, Generation of multiple ultrastable optical frequency. Sci. Adv. 6, 4457 (2020)

    Article  ADS  Google Scholar 

  5. Y. Na et al., Ultrafast, sub-nanometre-precision and multifunctional time-of-flight detection. Nat. Photonics 14, 355–360 (2020)

    Article  ADS  Google Scholar 

  6. K. Jung, J. Kim, Subfemtosecond synchronization of microwave oscillators with mode-locked Er-fiber lasers. Opt. Lett. 37, 2958–2960 (2012)

    Article  ADS  Google Scholar 

  7. M. Walbran, A. Gliserin, K. Jung, J. Kim, P. Baum, 5-femtosecond laser-electron synchronization for pump-probe crystallography and diffraction. Phys. Rev. Appl. 4, 044013 (2015)

    Article  ADS  Google Scholar 

  8. J. Kim, J.A. Cox, J. Chen, F.X. Kärtner, Drift-free femtosecond timing synchronization of remote optical and microwave sources. Nat. Photonics 2, 733–736 (2008)

    Article  ADS  Google Scholar 

  9. S. Schulz et al., Femtosecond all-optical synchronization of an X-ray free-electron laser. Nat. Commun. 6, 5938 (2015)

    Article  ADS  Google Scholar 

  10. A.G. Glenday et al., Operation of a broadband visible-wavelength astro-comb with a high-resolution astrophysical spectrograph. Optica 2, 250–254 (2015)

    Article  ADS  Google Scholar 

  11. G. Marra et al., High-resolution microwave frequency transfer over an 86-km-long optical fiber network using a mode-locked laser. Opt. Lett. 36, 511–513 (2011)

    Article  ADS  Google Scholar 

  12. F.R. Giorgetta et al., Broadband phase spectroscopy over turbulent air paths. Phys. Rev. Lett. 115, 103901 (2015)

    Article  ADS  Google Scholar 

  13. K.D. Ridley, Measurements of laser phase fluctuations induced by atmospheric turbulence over 2 km and 17.5km distances. Appl. Opt. 50, 5085–5092 (2011)

    Article  ADS  Google Scholar 

  14. S. Tichkule, A. Muschinski, Effects of wind-driven telescope vibrations on measurements of turbulent angle-of-arrival fluctuations. Appl. Opt. 53, 4651–4660 (2014)

    Article  ADS  Google Scholar 

  15. W.C. Swann et al., Measurement of the impact of turbulence anisoplanatism on precision free-space optical time transfer. Phys. Rev. A 99, 023855 (2019)

    Article  ADS  Google Scholar 

  16. J.-M. Conan, G. Rousset, P.-Y. Madec, Wave-front temporal spectra in high-resolution imaging through turbulence. J. Opt. Soc. Am. A 12, 1559–1570 (1995)

    Article  ADS  Google Scholar 

  17. D.P. Greenwood, D.O. Tarazano, Proposed form for the atmospheric turbulence spatial spectrum at large scales. J. Opt. Soc. Am. A 25, 1349–1360 (2008)

    Article  ADS  Google Scholar 

  18. L.C. Sinclair et al., Optical phase noise from atmospheric fluctuations and its impact on optical time-frequency transfer. Phys. Rev. A 89, 023805 (2014)

    Article  ADS  Google Scholar 

  19. E.D. Caldwell et al., Optical timing jitter due to atmospheric turbulence: comparison of frequency comb measurements to predictions from micrometeorological sensors. Opt. Express 28, 26661–26675 (2020)

    Article  ADS  Google Scholar 

  20. R. Rao, S. Wang, X. Liu, Z. Gong, Turbulence spectrum effect on wave temporal-frequency spectra for light propagating through the atmosphere. J. Opt. Soc. Am. A 16, 2755–2762 (1999)

    Article  ADS  Google Scholar 

  21. H.J. Kang et al., Free-space transfer of comb-rooted optical frequencies over an 18 km open-air link. Nat. Commun. 10, 4438 (2019)

    Article  ADS  Google Scholar 

  22. J. Kang et al., Few-femtosecond-resolution characterization and suppression of excess timing jitter and drift in indoor atmospheric frequency comb transfer. Opt. Express 22, 26023–26031 (2014)

    Article  ADS  Google Scholar 

  23. P. Cinquegrana et al., Optical beam transport to a remote location for low jitter pump-probe experiments with a free electron laser. Phys. Rev. Accel. Beams. 17, 040702 (2014)

    Article  ADS  Google Scholar 

  24. J.-D. Deschênes et al., Synchronization of distant optical clocks at the femtosecond level. Phys. Rev. X 6, 021016 (2016)

    Google Scholar 

  25. R.P. Gollapalli, L. Duan, Atmospheric timing transfer using a femtosecond frequency comb. IEEE Photon. J. 2, 904–910 (2010)

    Article  ADS  Google Scholar 

  26. J. Lee et al., Time-of-flight measurement with femtosecond light pulses. Nat. Photonics 4, 716 (2010)

    Article  ADS  Google Scholar 

  27. M. Hulea, Z. Ghassemlooy, S. Rajbhandari, X. Tang, Compensating for optical beam scattering and wandering in fso communications. J. Light. Technol. 32, 1323–1328 (2014)

    Article  ADS  Google Scholar 

  28. F.R. Giorgetta et al., Optical two-way time and frequency transfer over free space. Nat. Photonics 7, 434–438 (2013)

    Article  ADS  Google Scholar 

  29. K.C. Cossel et al., Open-path dual-comb spectroscopy to an airborne retroreflector. Optica 4, 724–728 (2017)

    Article  ADS  Google Scholar 

  30. H. Bergeron et al., Femtosecond time synchronization of optical clocks off of a flying quadcopter. Nat. Commun. 10, 1819 (2019)

    Article  ADS  Google Scholar 

  31. L.C. Sinclair et al., Femtosecond optical two-way time-frequency transfer in the presence of motion. Phys. Rev. A 99, 023844 (2019)

    Article  ADS  Google Scholar 

  32. D. Herman et al., Femtosecond timekeeping: slip-free clockwork for optical timescales. Phys. Rev. Appl. 9, 044002 (2018)

    Article  ADS  Google Scholar 

  33. M.I. Bodine et al., Optical atomic clock comparison through turbulent air. Phys. Rev. Research 2, 033395 (2020)

    Article  ADS  Google Scholar 

  34. L.C. Sinclair et al., Synchronization of clocks through 12 km of strongly turbulent air over a city. Appl. Phys. Lett. 109, 151104 (2016)

    Article  ADS  Google Scholar 

  35. C. Hu, R.P. Gollapalli, L. Yang, L. Duan, Excess phase noise characterization in multifrequency remote clock distribution based on femtosecond frequency combs. Appl. Sci. 5, 77–87 (2015)

    Article  Google Scholar 

  36. R.P. Gollapalli, L. Duan, Multiheterodyne characterization of excess phase noise in atmospheric transfer of a femtosecond-laser frequency comb. J. Light. Technol. 29, 3401–3407 (2011)

    Article  ADS  Google Scholar 

  37. F. Sun et al., Femtosecond-level timing fluctuation suppression in atmospheric frequency transfer with passive phase conjunction correction. Opt. Express 25, 21312–21320 (2017)

    Article  ADS  Google Scholar 

  38. G. Guo et al., Laser-based atmospheric radio-frequency transfer with sub-picosecond timing fluctuation using single phase compensator. Opt. Commun. 426, 526–530 (2018)

    Article  ADS  Google Scholar 

  39. Y. Chen et al., Stable radio frequency transfer over free space by passive phase correction. IEEE Photon. J. 11, 5503308 (2019)

    Article  Google Scholar 

  40. D.R. Gozzard, S.W. Schediwy, B. Stone, M. Messineo, M. Tobar, Stabilized free-space optical frequency transfer. Phys. Rev. Appl. 10, 024046 (2018)

    Article  ADS  Google Scholar 

  41. W.C. Swann et al., Low-loss reciprocal optical terminals for two-way time-frequency transfer. Appl. Opt. 56, 9406 (2017)

    Article  ADS  Google Scholar 

  42. B. P. Dix-Matthews et al. Point-to-point stabilized optical frequency transfer with active optics, arXiv200704985 [physics.ins-det] (2020)

  43. G.-R. Kim, T.-I. Jeon, D. Grischkowsky, 910-m propagation of THz ps pulses through the atmosphere. Opt. Express 25, 25422 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The results in this work are obtained using the infrastructure and resources of Professor Jungwon Kim’s group at Korea Advanced Institute of Science and Technology (KAIST). I thank fruitful discussions and technical supports from Changmin Ahn, Jaegoan Lee and Jungwon Kim of KAIST and Myoung-Sun Heo, Sang Eon Park and Dai-Hyuk Yu of Korea Research Institute of Standards and Science (KRISS).

Funding

This work was supported by the Government Contribution Research Fund to KAERI of Republic of Korea (524450–20) and National Research Foundation of Republic of Korea (2013M1A3A3A02042273).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junho Shin.

Ethics declarations

Conflicts of interest

The author declares no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, J. Optical frequency comb transfer through 820-m-scale atmospheric turbulence for low-noise radiofrequency distribution. J. Korean Phys. Soc. 78, 1055–1061 (2021). https://doi.org/10.1007/s40042-021-00168-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00168-1

Keywords

Navigation