Skip to main content
Log in

Graphene-encapsulation effect of BaTiO3 on AC electroluminescence

  • Original Paper
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Alternating current (AC) driven inorganic electroluminescence (EL) was investigated with a focus on the polymer-based dielectric layer, where barium titanate (BTO) powder particles encapsulated in reduced graphene oxide (rGO) platelets. The EL devices with rGO-encapsulated BTO exhibited higher luminescence and lower current density than the non-encapsulated case with BTO only, primarily due to enhanced dielectric performance of the dielectric layer. This was originated from the encapsulation of BTO in rGO platelets through the interfacial polarization of numerous micro-capacitors within the dielectric layer. By varying the concentration of rGO (0, 0.05, 0.10, and 0.20 wt%), the optimum concentration of encapsulated rGO was found to be near 0.10 wt%, where the highest concentration case (0.20 wt%) showed the worst EL performance, possibly due to crisscross linking among rGO-encapsulated BTO. We found that the quality of the dielectric layer, if the optimum concentration of graphene was employed, was a key factor in AC EL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. G. Destriau, J Chem Phys 33, 587 (1936)

    Google Scholar 

  2. D.R. Vij, Handbook of Electroluminescent Materials (Institute of Physics, 2004).

    Book  Google Scholar 

  3. Y.A. Ono, Electroluminescent Displays (World Scientific, 1995).

    Book  Google Scholar 

  4. S. Shionoya, W.M. Yen, Phosphor Handbook (CRC Press, 1999).

    Google Scholar 

  5. A.G. Fischer, J Electrochem Soc 110, 733 (1963)

    Article  Google Scholar 

  6. M.J. Bae, S.H. Park, T.W. Jeong, J.H. Lee et al., Appl Phys Lett 95, 071901 (2009)

    Article  ADS  Google Scholar 

  7. J.-Y. Kim, M.J. Bae, S.H. Park, T.W. Jeong et al., Carbon 50, 170 (2012)

    Article  Google Scholar 

  8. J.-Y. Kim, S.H. Park, T.W. Jeong, M.J. Bae et al., J Mater Chem 22, 20158 (2012)

    Article  Google Scholar 

  9. J.-Y. Kim, M.J. Bae, S.H. Park, T.W. Jeong et al., Organic Electron 12, 529 (2011)

    Article  Google Scholar 

  10. J.-Y. Kim, S.H. Park, T.W. Jeong, M.J. Bae et al., IEEE Trans Electron Dev 57, 1470 (2010)

    Article  ADS  Google Scholar 

  11. S. Iijima, Nature (London) 354, 56 (1991)

    Article  ADS  Google Scholar 

  12. W.K. Yi, T.W. Jeong, S.G. Yu, J.N. Heo et al., Adv Mat 14, 1464 (2002)

    Article  Google Scholar 

  13. J.-Y. Kim, W.H. Lee, J.W. Suk, J.R. Potts et al., Adv Mater 25, 2308 (2013)

    Article  Google Scholar 

  14. J.-Y. Kim, H. Kim, S.H. Park, T. Jeong et al., Organic Electron 13, 2959 (2012)

    Article  Google Scholar 

  15. Y.W. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh et al., Science 332, 1537 (2011)

    Article  ADS  Google Scholar 

  16. I.N. Kholmanov, C.W. Magnuson, A.E. Aliev, H.F. Li et al., Nano Lett 12, 5679 (2012)

    Article  ADS  Google Scholar 

  17. X.J. Zhu, Y.W. Zhu, S. Murali, M.D. Stollers, R.S. Ruoff, ACS Nano 5, 3333 (2011)

    Article  Google Scholar 

  18. L. Wang, J. Lian, P. Cui, Y. Xu et al., Chem Commun 48, 4052 (2012)

    Article  Google Scholar 

  19. S. Park, J.H. An, I.W. Jung, R.D. Piner et al., Nano Lett. 9, 1593 (2009)

    Article  ADS  Google Scholar 

  20. Z.P. Wang, J.K. Nelson, H. Hillborg, S. Zhao et al., Adv Mater 24, 3134 (2012)

    Article  Google Scholar 

  21. S.-Y. Jun, D. Jung, J.-Y. Kim, S. Yu, Mater Chem Phys 255, 123533 (2020)

    Article  Google Scholar 

  22. I. Singh, P.K. Bhatnagar, P.C. Mathur, I. Kaur et al., Carbon 46, 1141 (2008)

    Article  Google Scholar 

  23. S.H. Yao, Z.M. Dang, M.J. Jiang, J.B. Bai, Appl PhysLett 93, 182905 (2008)

    ADS  Google Scholar 

  24. C. Pecharroman, F. Esteban-Betegon, J.F. Bartolome, S. Lopez-Esteban, J.S. Moya, Adv Mater 13, 1541 (2001)

    Article  Google Scholar 

  25. S.-Y. Jeon, S. Yu, J Korean Phys Soc 70, 442 (2017)

    Article  Google Scholar 

  26. S.-Y. Jun, H. Lim, D. Jung, J.-H. Ko et al., Carbon 146, 462 (2019)

    Article  Google Scholar 

  27. Wikipedia, Lambert’s cosine law. (https://en.wikipedia.org/wiki/Lambert%27s_cosine_law).

  28. R.W. Hornbeck, Numerical Methods (Quantum Publishers, New York, 1975).

    Google Scholar 

Download references

Acknowledgements

This research was financially supported by Basic Science Research Program through the National Research Foundation (NRF) funded by the Ministry of Education of Korea government (NRF-2018R1D1A1B07050688). S.Y. was financially supported by Hankuk University of Foreign Studies Research Fund of 2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SeGi Yu.

Ethics declarations

Conflicts of interest

No.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jun, SY., Yu, S. Graphene-encapsulation effect of BaTiO3 on AC electroluminescence. J. Korean Phys. Soc. 78, 1128–1132 (2021). https://doi.org/10.1007/s40042-021-00167-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00167-2

Keywords

Navigation