Skip to main content
Log in

Effects of the technique parameters on the imaging performance of the dual-energy chest radiography

  • Original Paper
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Conventional chest-radiography images are the most basic X-ray imaging system for diagnosing lung diseases. However, space-averaging increases due to the overlapping of anatomy structures as three-dimensional information are reduced in two-dimensions. A dual-energy X-ray imaging (DEI) technique for resolve space-averaging is used to increase the conspicuity of the lesion (i.e., lung nodule and calcification) by suppressing anatomical background noise. DEI techniques perform the weighted log-subtraction using the attenuation characteristics of the material for low- and high-kilovoltage-peak (kVp) X-rays. And the weighting factor is calculated to suppressing anatomical background. The objective of this research is to increase the lesion conspicuity in lung regions by optimizing DE technique parameters. DE technique has been applied to three phantoms mimicking the average, thick, and thicker adult chest thicknesses while maintaining the total incident dose equivalent to that used to obtain a single chest radiograph. Investigating DE technique parameters include the added filtration, the low- and high-kVp pair, and the dose allocation between low- and high-kVp setups at the total dose equal to or less than that of the conventional chest radiograph. And the DE image performances investigated through contrast-to-noise ratio, modulation-transfer function, noise-power spectrum, and detective quantum efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.T. Dobbins III., H.P. McAdams, Eur J Radiol 72, 2 (2009)

    Article  Google Scholar 

  2. J.T. Dobbins III., H.P. McAdams, J.M. Sabol, D.P. Chakraborty, E.A. Kazerooni, G.P. Reddy, J. Vikgren, M. Båth, Radiology 282, 1 (2017)

    Article  Google Scholar 

  3. R.E. Alvarez, J.A. Seibert, S.K. Thompson, Med Phys 31, 3 (2004)

    Article  Google Scholar 

  4. S. Richard, J.H. Siewerdsen, Med Phys 34, 1 (2007)

    Article  Google Scholar 

  5. R.E. Alvarez, A. Macovski, Phys Med Biol 21, 5 (1976)

    Article  Google Scholar 

  6. M.R. Lemacks, S.C. Kappadath, C.C. Shaw, X. Liu, G.J. Whitman, Med Phys 29, 8 (2002)

    Article  Google Scholar 

  7. S. Richard, J.H. Siewerdsen, D.A. Jaffray, D.J. Moseley, B. Bakhtiar, Med Phys 32, 5 (2005)

    Google Scholar 

  8. D.B. Williams, J.H. Siewerdsen, D.J. Tward, N.S. Paul, A.C. Dhanantwari, N.A. Shkumat, S. Richard, J. Yorkston, R. Van Metter, Med Phys 34, 10 (2007)

    Google Scholar 

  9. N.A. Shkumat, J.H. Siewerdsen, S. Richard, N.S. Paul, J. Yorkston, R. Van Metter, Med Phys 35, 2 (2008)

    Article  Google Scholar 

  10. L.A. Lehmann, R.E. Alvarez, A. Macovski, W.R. Brody, N.J. Pelc, S.J. Riederer, A.L. Hall, Med Phys 8, 5 (1981)

    Article  Google Scholar 

  11. J.H. Siewerdsen, N.A. Shkumat, A.C. Dhanantwari, D.B. Williams, S. Richard, M.J. Daly, N.S. Paul, D.J. Moseley, D.A. Jaffrary, J. Yorkston et al., Proc SPIE 5, 6142 (2006)

    ADS  Google Scholar 

  12. G.J. Gang, C.A. Varon, H. Kashani, S. Richard, N.S. Paul, R. Van Metter, J. Yorkston, J.H. Siewerdsen, Med Phys 36, 2 (2009)

    Google Scholar 

  13. J.L. Ducote, T. Xu, S. Molloi, Phys Med Biol 52, 1 (2007)

    Article  Google Scholar 

  14. S. Richard, J.H. Siewerdsen, Med Phys 35, 2 (2008)

    Google Scholar 

  15. W.R. Brody, G. Butt, A. Hall, A. Macovski, Med Phys 8, 3 (1981)

    Google Scholar 

  16. I.A. Cunningham, Handbook of Medical Imaging (SPIE, 2000).

    Google Scholar 

  17. H.K. Kim, I.A. Cunningham, Z. Yin, G. Cho, Int J Precis Eng Manuf 9, 86 (2008)

    Google Scholar 

  18. H.K. Kim, S.M. Yun, J.S. Ko, G. Cho, T. Graeve, IEEE Trans Nucl Sci 55, 1357 (2008)

    Article  ADS  Google Scholar 

  19. E. Samei, M.J. Flynn, D.A. Reimann, Med Phys 25, 102 (1998)

    Article  Google Scholar 

  20. S.N. Friedman, I.A. Cunningham, Med Phys 35, 4443 (2008)

    Article  Google Scholar 

  21. J.T. Dobbins, Handbook of Medical Imaging (SPIE, 2000).

    Google Scholar 

  22. G. Lubberts, J Opt Soc Am 58, 11 (1968)

    Article  Google Scholar 

  23. D.M. Tucker, G.T. Barnes, D.P. Chakranborty, Med Phys 18, 2 (1991)

    Google Scholar 

  24. G.J. Gang, W. Zbijewski, S. Webster, J.H. Siewerdsen, Med Phys 1, 8–39 (2012)

    Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2020R1A6A3A01100169). Changsoo Kim and Sung-Hee Yang were supported by a research grant in 2020 from the Catholic University of Pusan (CUP No. 2020-1-018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junwoo Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, C., Yang, SH. & Kim, J. Effects of the technique parameters on the imaging performance of the dual-energy chest radiography. J. Korean Phys. Soc. 78, 849–859 (2021). https://doi.org/10.1007/s40042-021-00164-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00164-5

Keywords

Navigation