Skip to main content
Log in

Acceleration of electrons by a lower hybrid wave in a magnetic mirror

  • Original Paper
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

In the present study, a theory of electron acceleration by a very large-amplitude lower hybrid wave (LHW) in a magnetic mirror having frequency less than the plasma frequency is developed. The LHW has a Gaussian mode profile and is localized due to the parabolic plasma density and the magnetic field profile. The mode can be excited by launching an electron beam from outside into the magnetic mirror. Large-amplitude LWHs have potential to axially trap the electrons when they are moving nearly parallel to the phase velocity, where parallel refers to the direction of the axial magnetic field. The energy of the electrons is enhanced at the instant of interaction between the wave and the electrons. The acceleration of electrons possibly stops as the electrons gets out of phase with the wave. The transverse field of the mode favors stronger mirror confinement and increases the dephasing length. This theory can accelerate electrons up to keV energies and can be employed in the heating of electrons in a magnetic mirror.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. W.L. Huang, Q.F. Li, Y.S. Luo, Chin. Phys. C. 30, 63 (2006)

    Google Scholar 

  2. J. Belloni, H. Monard, F. Gobert, J.-P. Larbre, A. Demarque, V. De Waele, I. Lampre, J.-P. Marignier, M. Mostafavi et al., Nucl. Instr. Method Phy. Res. A 539, 527 (2005)

    Article  ADS  Google Scholar 

  3. H. Wiedemann, Particle Accelerator Physics (Springer, Cham, 2015). https://doi.org/10.1007/978-3-319-18317-6

    Book  Google Scholar 

  4. T. Tajima, X.Q. Yan, T. Ebisuzaki, Rev. Mod. Plasma Phys. 4, 7 (2020)

    Article  ADS  Google Scholar 

  5. T. Tajima, J.M. Dawson, Phys. Rev. Lett. 43, 264 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  6. R. Bingham, J.T. Mendon, P.K. Shukla, Plasma Phys. Control Fusion 46, R1 (2004)

    Article  ADS  Google Scholar 

  7. I.Y. Dodin, N.J. Fisch, Phys. Plasma 15, 103105 (2008)

    Article  ADS  Google Scholar 

  8. C.G.R. Geddes, C.S. Toth, J. van Tilborg, E. Esarey, C.B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, W.P. Leemans, Nature 431, 538 (2004)

    Article  ADS  Google Scholar 

  9. A. Varma, A. Kumar, Optik 228, 166212 (2021)

    Article  ADS  Google Scholar 

  10. A. Kumar, B. Pandey, V.K. Tripathi, Laser Part. Beams 28, 409 (2010)

    Article  ADS  Google Scholar 

  11. R. Jeet, A. Kumar, Laser Part. Beams 38, 79 (2020)

    Article  ADS  Google Scholar 

  12. V. Sajal, V.K. Tripathi, Opt. Comm. 281, 3542 (2008)

    Article  ADS  Google Scholar 

  13. M. Goniche, D. Guilhem, P. Bibet, P. Froissard, X. Litaudon, G. Rey, J. Mailloux, Y. Demers, V. Fuchs, P. Jacquet, J.H. Harris, J.T. Hogan, Nucl. Fusion 38, 919 (1998)

    Article  ADS  Google Scholar 

  14. V. Fuchs, M. Goniche, Y. Demers, P. Jacquet, J. Mailloux, Phys. Plasma 3, 11 (1996)

    Article  Google Scholar 

  15. R. Bingham, J.J. Su, V.D. Shapiro, V. Shevchenko, S. Ma, J.M. Dawson, V.N. Tsytovichs, Phys. Scr. 52, 20 (1994)

    Article  Google Scholar 

  16. R. Bingham, J.M. Dawson, V.D. Shapiro, J. Plasma Phys. 68, 161 (2002)

    Article  ADS  Google Scholar 

  17. J.R. Martin-Solis, R. Sanchez, B. Esposito, Phys. Plasmas 9, 1667 (2002)

    Article  ADS  Google Scholar 

  18. J.M. Laming, Astrophys. J. 563, 828 (2001)

    Article  ADS  Google Scholar 

  19. N. Dubouloz, R.A. Treumann, R. Pottelette, K.A. Lynch, Geophys. Res. Lett. 22, 2969 (1995)

    Article  ADS  Google Scholar 

  20. I.H. Cairns, B.F. McMillan, J. Plasma Phys. 12, 102110 (2005)

    Article  Google Scholar 

  21. M. Hoshino, T. Mukai, T. Terasawa, I. Shinohara, J. Geophys. Res. 106, 979 (2001)

    Google Scholar 

Download references

Acknowledgements

One of the authors, Mr. Ram Jeet, would like thank UGC, New Delhi-India for financial support (SRF). Mr. Arvind Kumar and Mr. Sanjay Babu are thankful to the University of Allahabad for providing D. Phil. fellowships for financial support and are grateful to Prof. VK Tripathi (IIT Delhi) for valuable discussions and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asheel Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeet, R., Kumar, A., Kumar, A. et al. Acceleration of electrons by a lower hybrid wave in a magnetic mirror. J. Korean Phys. Soc. 78, 1179–1184 (2021). https://doi.org/10.1007/s40042-021-00163-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00163-6

Keywords

Navigation