Skip to main content
Log in

Gain and efficiency of table-top terahertz free-electron lasers driven by a microtron accelerator

  • Original Paper
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

There are difficulties in developing high-power and small-size terahertz (THz) sources that can be used for field applications. In an attempt to design small-size THz free-electron laser (FEL) devices capable of producing higher output powers in the THz spectral region of 1–2 THz, we have developed a microtron accelerator that can accelerate electron beams to 3–6 meV, with a macropulse current of more than 40 mA. The new THz FELs use hybrid electromagnetic (EM) undulators that are two to four times shorter in length than the previous undulator and waveguide resonators with mode cross-sectional areas that are more than two times smaller than the parallel-plate waveguide in the existing FEL. We confirm that the gains and losses of the compact FELs are sufficient for lasing, and we estimate that average output power of approximately 1 W is possible with an efficiency approximately 10 times greater than the existing FEL. The minimum size of the THz FEL system, including a high-voltage pulse modulator, is estimated to be approximately 1.5 m × 2.0 m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.H. Son, S.J. Oh, H. Cheon, J. Appl. Phys. 125, 190901 (2019)

    Article  ADS  Google Scholar 

  2. Q. Sun et al., Quant. Imaging Med. Surg. 7, 345 (2017)

    Article  Google Scholar 

  3. D. Alves-Lima et al., Sensors 20, 1441 (2020)

    Article  ADS  Google Scholar 

  4. X.Y. Miao et al., Sci. China-Phys. Mech. Astron. 61, 104211 (2018)

    Article  ADS  Google Scholar 

  5. L. Consolino, S. Bartalini, P. De Natale, J. Infrared Milli Terahertz Waves 38, 1289 (2017)

    Article  Google Scholar 

  6. K. Kawase, Y. Ogawa, Y. Watanabe, Opt. Express 20, 2549 (2003)

    Article  ADS  Google Scholar 

  7. G.-R. Kim, T.-I. Jeon, D. Grischkowsky, Opt. Express 25, 25422 (2017)

    Article  ADS  Google Scholar 

  8. L. Yu et al., RSC Adv. 9, 9354 (2019)

    Article  ADS  Google Scholar 

  9. J.F. Federici et al., Semicond. Sci. Technol. 20, 266 (2005)

    Article  Google Scholar 

  10. C. Corsi, F. Sizov, THz and Security Applications (Springer, Berlin, 2014).

    Book  Google Scholar 

  11. C. Sirtori, Nature 417, 132 (2002)

    Article  ADS  Google Scholar 

  12. L.R. Elias, IEEE J. Quantum Electron. 23, 1470 (1987)

    Article  ADS  Google Scholar 

  13. D. Oepts, A.F.G. van der Meer, P.W. van Amersfoort, Infrared Phys. Technol. 36, 297 (1995)

    Article  ADS  Google Scholar 

  14. R. Prazeres et al., Nucl. Instrum. Methods A 445, 204 (2000)

    Article  ADS  Google Scholar 

  15. A. Doria et al., Nucl. Instrum. Methods A 475, 296 (2001)

    Article  ADS  Google Scholar 

  16. Y.U. Jeong et al., Nucl. Instrum. Methods A 528, 88 (2004)

    Article  ADS  Google Scholar 

  17. J.M. Klopf et al., Nucl. Instrum. Methods A 582, 114 (2007)

    Article  ADS  Google Scholar 

  18. G.N. Kulipanov et al., Terahertz Sci. Technol. 1, 107 (2008)

    Google Scholar 

  19. G.N. Kulipanov et al., IEEE Trans. Terahertz Sci. 5, 798 (2015)

    Article  Google Scholar 

  20. B.A. Knyazev, G.N. Kulipanov, N.A. Vinokurov, Meas. Sci. Technol. 21, 054017 (2010)

    Article  ADS  Google Scholar 

  21. Y.U. Jeong et al., Nucl. Instrum. Methods A 475, 47 (2001)

    Article  ADS  Google Scholar 

  22. Y.U. Jeong et al., Nucl. Instrum. Methods A 483, 363 (2002)

    Article  ADS  Google Scholar 

  23. G.M. Kazakevitch et al., Nucl. Instrum Methods A 507, 146 (2003)

    Article  ADS  Google Scholar 

  24. Y.U. Jeong et al., Nucl. Instrum. Methods A 543, 90 (2005)

    Article  ADS  Google Scholar 

  25. H.J. Cha et al., J. Korean Phys. Soc. 49, 354 (2006)

    Google Scholar 

  26. G.N. Zhizhin et al., Infrared Phys. Technol. 49, 108 (2006)

    Article  ADS  Google Scholar 

  27. Y. Hwang et al., Opt. Express 22, 11465 (2014)

    Article  ADS  Google Scholar 

  28. J. Mun et al., Phys. Rev. ST Accel. Beams 17, 080701 (2014)

    Article  ADS  Google Scholar 

  29. Y.U. Jeong et al., IEEE Trans. Nucl. Sci. 63, 898 (2016)

    Article  ADS  Google Scholar 

  30. T. Yoon, et al., 2019 IVEC, IEEE, https://doi.org/10.1109/IVEC.2019.8745332 (Busan, Korea, 2019).

  31. S. Bae, et al., 2019 IVEC, IEEE, https://doi.org/10.1109/IVEC.2019.8745262 (Busan, Korea, 2019).

  32. S.V. Miginsky et al., Bull. Russ. Acad. Sci. Phys. 82, 1604 (2018)

    Article  Google Scholar 

  33. S.P. Kapitza, V.N. Melekhin, The Microtron (Harwood Academic Publishers, Reading, 1978).

    Google Scholar 

  34. W.B. Colson, C. Pellegrini, A. Renieri, Laser Handbook, vol. 6 (North Holland, New York, 1990).

    Google Scholar 

  35. H. Zen, H. Ohgaki, R. Hajima, Phys. Rev. Accel. Beams 23, 070701 (2020)

    Article  ADS  Google Scholar 

  36. H. Zen, H. Ohgaki, R. Hajima, Appl. Phys. Express 13, 102007 (2020)

    Article  ADS  Google Scholar 

  37. Y.U. Jeong et al., J. Korean Phys. Soc. 51, 416 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the late Dr. Sergey Miginsky for helpful discussions and gratefully acknowledge support from the internal R&D program of KAERI, funded by the Ministry of Science and ICT (MSIT) of the Republic of Korea (524420-21), and a National Research Council of Science & Technology (NST) Grant awarded by the Korean government (MSIT) (No. CAP-18-05-KAERI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Uk Jeong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bae, S., Mun, J., Jang, KH. et al. Gain and efficiency of table-top terahertz free-electron lasers driven by a microtron accelerator. J. Korean Phys. Soc. 78, 1047–1054 (2021). https://doi.org/10.1007/s40042-021-00161-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00161-8

Keywords

Navigation