Skip to main content
Log in

Charge-trapping memory device based on a heterostructure of MoS2 and CrPS4

  • Original Paper
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Atomically thin two-dimensional (2D) materials have emerged as promising candidates for flexible and transparent electronic applications. Here, we introduce non-volatile charge trapping memory devices, based on the 2D heterostructure field-effect transistor consisting of a few-layer MoS2 channel and CrPS4 charge-trapping gate stack. Clockwise hysteresis behaviors in transfer curves measured at room temperature show strong dependence on the thickness of CrPS4, which are attributed to charge trapping at trap sites in the CrPS4 layers. Our heterostructure memory device with 75 nm-thick CrPS4 layer exhibits both large memory windows up to 100 V and a high on/off current ratio (3 \(\times\) 105) with good endurance during 625 cycles because of excellent trapping ability of trap sites in the CrPS4. Especially, the memory window size can be effectively tuned from 7.6 to 100 V by changing the sweep range of gate voltage. Such high performances of the charge-trapping memory device with a simple heterostructure provide a promising route towards next-generation memory devices utilizing 2D materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Manzeli et al., Nat. Rev. Mater. 2, 17033 (2017)

    Article  ADS  Google Scholar 

  2. J. Shim et al., Adv. Electron. Mater. 3, 1600364 (2017)

    Article  Google Scholar 

  3. Z. Zhang et al., InfoMat. 2, 261–290 (2020)

    Article  Google Scholar 

  4. F. Liao et al., ACS Appl. Electron. Mater. 2, 111–119 (2020)

    Article  Google Scholar 

  5. B.W.H. Baugher et al., Nano Lett. 13, 4212–4216 (2013)

    Article  ADS  Google Scholar 

  6. J. Late et al., ACS Nano 6, 5635–5641 (2012)

    Article  Google Scholar 

  7. Y. Guo et al., Appl. Phys. Lett. 106, 103109 (2015)

    Article  ADS  Google Scholar 

  8. N. Kaushik et al., npj 2D Mater. Appl. 1, 34 (2017)

    Google Scholar 

  9. A. Di Bartolomeo et al. 2D Materials 5, 1 (2018)

  10. K.L. Ganapathi et al., Semicond. Sci. Technol. 34, 055016 (2019)

    Article  ADS  Google Scholar 

  11. F.S. Yang et al., Nat. Commun. 11, 2972 (2020)

    Article  ADS  Google Scholar 

  12. K. Yang et al., Nanomaterials 10, 1471 (2020)

    Article  Google Scholar 

  13. E. Zhang et al., ACS Nano 9, 612–619 (2015)

    Article  Google Scholar 

  14. C. Lee et al., Nanotechnology 29, 335202 (2018)

    Article  ADS  Google Scholar 

  15. S.P. Wang et al., Adv. Electron. Mater. 5, 1800726 (2019)

    Article  Google Scholar 

  16. G.-H. Lee et al., APL Mater. 2, 092511 (2014)

    Article  ADS  Google Scholar 

  17. J. Lee et al., ACS Nano 11, 10935–10944 (2017)

    Article  Google Scholar 

  18. S. Ding et al., J. Phys. Condens. Matter 32, 405804 (2020)

    Article  Google Scholar 

  19. M. Shin et al., J. Korean Phys. Soc. 76, 8 (2020)

    Article  Google Scholar 

  20. R. Frisenda et al., Chem. Soc. Rev. 47, 53–68 (2018)

    Article  Google Scholar 

  21. Q. Feng et al., Nanoscale 8, 2686–2692 (2016)

    Article  ADS  Google Scholar 

  22. M. Chen et al., ACS Nano 8, 4023–4032 (2014)

    Article  Google Scholar 

  23. H.J. Kim et al., Nanoscale 10, 17557–17566 (2018)

    Article  Google Scholar 

  24. M. Zhang et al., Nanophotonics 9, 2475–2486 (2020)

    Article  Google Scholar 

  25. S. Bertolazzi et al., ACS Nano 7, 3246–3252 (2013)

    Article  Google Scholar 

  26. C.C. Lu et al., ACS Nano 6, 4469–4474 (2012)

    Article  Google Scholar 

  27. P. Xia et al., Sci. Rep. 7, 40669 (2017)

    Article  ADS  Google Scholar 

  28. M.J. Lee et al., NPG Asia Mater. 12, 82 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Research Foundation of Korea (NRF) grants funded by the Korea government (MSIP) (No. 2013R1A3A2042120) and the Nano Material Technology Development Program through the NRF funded by the MSIP (No. 2016M3A7B4909668). The work at CQM and SNU was supported by the Leading Researcher Program of NRF (No. 2020R1A3B2079375). This paper was supported by Konkuk University Researcher Fund in 2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bae Ho Park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, M., Lee, M.J., Yoon, C. et al. Charge-trapping memory device based on a heterostructure of MoS2 and CrPS4. J. Korean Phys. Soc. 78, 816–821 (2021). https://doi.org/10.1007/s40042-021-00154-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00154-7

Keywords

Navigation