Skip to main content
Log in

Dark current analysis of an InAs/GaSb type II superlattice infrared photodiode with SiO2 passivation

  • Original Paper
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

In this study, we present the current–voltage (I–V) characteristics of a 10 ML InAs/10 ML GaSb type-II superlattice (T2SL) with p-i-n structures for mid-infrared detection. At a negative bias and a temperature of 50 mV and 77 K, respectively, the cut-off wavelength of the fabricated T2SL photodiode with SiO2 passivation on the mesa side wall was approximately 5.6 μm, and the dark current density was found to be 1.9 × 10–5 A/cm2. The bulk dark current model was adopted in this study to obtain the measured values by modeling, assuming the generation-recombination lifetime of the carrier to be approximately 60 ns, and considering the surface leakage current, as well as the four dark current mechanisms. At low operating temperatures, we inferred that the T2SL photodiode was limited by the effects of surface leakage, whereas the effects of the band-to-band and diffusion components of the dark current were negligible. Therefore, reducing the surface leakage current to obtain high-performance detectors requires the development of advanced passivation materials and technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Rogalski, P. Martyniuk, Infrared Phys. Technol. 48, 39 (2006)

    Article  ADS  Google Scholar 

  2. H. Mohseni, V. Litvinov, M. Razeghi, Phys. Rev. B. 58, 15378 (1998)

    Article  ADS  Google Scholar 

  3. A. Rogalsk, Proc. SPIE 10433, 104330L (2017)

    Google Scholar 

  4. E.A. Plis, M.N. Kutty, S. Krishna, Laser Photonics Rev. 7, 45 (2013)

    Article  ADS  Google Scholar 

  5. E. Papis-Polakowska et al., Appl. Phys. B 125, 1 (2019)

    Article  Google Scholar 

  6. D. Pulver, C.W. Wilmsen, D. Niles, R. Kee, J. Vac. Sci. Technol. B 19, 207 (2001)

    Article  Google Scholar 

  7. C.L. Hinkle, A.M. Sonnet, E.M. Vogel, S. McDonnel, G.J. Hughes, M. Milojevic, B. Lee, F.S. Aguirre-Tostado, K.J. Choi, H.C. Kim, J. Kim, R.M. Wallace, Appl. Phys. Lett. 92, 071901 (2008)

    Article  ADS  Google Scholar 

  8. O. Salihoglu, Abdullah Muti, Kutlu Kutluer, Tunay Tansel, Rasit Turan, Coskun Kocabas, Atilla Aydinli. J. Appl. Phys. 111, 074509 (2012)

    Article  ADS  Google Scholar 

  9. M. Herrera, M. Chi, M. Bonds, N.D. Browning, J.N. Woolman, R.E. Kvaas, S.F. Harris, D.R. Rhiger, C.J. Hill, Appl. Phys. Lett. 93, 093106 (2008)

    Article  ADS  Google Scholar 

  10. R. Peng, S. Jiao, D. Jiang, H. Li, L. Zhao, Thin Solid Films 629, 55 (2017)

    Article  ADS  Google Scholar 

  11. H.S. Kim, J. Korean Phys. Soc. 74, 358 (2019)

    Article  ADS  Google Scholar 

  12. E. Plis, S.J. Lee, Zh. Zhu, A. Amtout, S. Krishna, IEEE J. Sel. Top. Quantum Electron. 12, 1269 (2006)

    Article  ADS  Google Scholar 

  13. B. Klein et al., J. Phys. D: Appl. Phys. 44, 075102 (2011)

    Article  ADS  Google Scholar 

  14. Q.K. Yang, F. Fuchs, J. Schmitz, W. Pletschen, Appl. Phys. Lett. 81, 4757 (2002)

    Article  ADS  Google Scholar 

  15. V. Gopal, E. Plis, J.-B. Rodriguez, C.E. Jones, L. Faraone, S. Krishna, J. Appl. Phys. 104, 124506 (2008)

    Article  ADS  Google Scholar 

  16. P. Martyniuk et al., Opt. Eng. 52, 061307 (2013)

    Article  ADS  Google Scholar 

  17. Z. Taghipour et al., Phys. Rev. Appl. 11, 024047 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT, and Future Planning (2017R1A2B4007390). In addition, H. Lee helped with the measurements and the analyses conducted in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ha Sul Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H.S. Dark current analysis of an InAs/GaSb type II superlattice infrared photodiode with SiO2 passivation. J. Korean Phys. Soc. 78, 1141–1146 (2021). https://doi.org/10.1007/s40042-021-00137-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00137-8

Keywords

Navigation