Skip to main content
Log in

Low-energy CP violation and leptogenesis in a minimal seesaw model

  • Original Paper
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We investigate whether CP phases in the neutrino mixing matrix can be the source of the CP violation necessary to achieve leptogenesis. In general, low-energy CP violation in the neutrino sector is not directly linked to leptogenesis, but we show that the low-energy leptonic CP violation can give rise to the CP asymmetry required for leptogenesis in a minimal seesaw model where the Dirac neutrino mass matrix contains one-zero texture. Performing numerical analyses based on the current results of the global fit to neutrino data and the measurement of baryon asymmetry, we study how the CP phases in the neutrino mixing matrix can be constrained and show how lepton asymmetry is sensitive to two heavy Majorana neutrino masses as well as CP phases. From the constraints on the neutrino parameters, the values of the effective neutrino mass contributing to the amplitude of neutrinoless double beta decay are predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The lepton asymmetry can be resonantly enhanced when \(M_2\) approaches \(M_1\) for \(M_2<100M_1\). The study for this case is beyond the scope of this work.

References

  1. G.C. Branco, R.G. Felipe, F.R. Joaquim, Rev. Mod. Phys. 84, 515 (2012)

    Article  ADS  Google Scholar 

  2. I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, T. Schwetz, A. Zhou, JHEP 09, 178 (2020)

    Article  ADS  Google Scholar 

  3. K. Abe et al., T2K Collaboration. Phys. Rev. Lett. 112, 061802 (2014)

    Article  ADS  Google Scholar 

  4. G. Zarnecki [T2K], Nuovo Cim. C 42, 6, 246 (2020)

  5. P. Adamson et al., MINOS Collaboration. Phys. Rev. Lett. 112, 191801 (2014)

    Article  ADS  Google Scholar 

  6. P. Adamson et al. [MINOS+], Phys. Rev. Lett. 125, 13, 131802 (2020)

  7. S.K. Kang, C.S. Kim, J.D. Kim, Phys. Rev. D 62, 073011 (2000)

    Article  ADS  Google Scholar 

  8. M. Fukugita, M. Tanimoto, Phys. Lett. B 515, 30 (2001)

    Article  ADS  Google Scholar 

  9. C. Giunti, M. Tanimoto, Phys. Rev. D 66, 113006 (2002)

    Article  ADS  Google Scholar 

  10. Z.-Z. Xing, Phys. Lett. B 533, 85 (2002)

    Article  ADS  Google Scholar 

  11. W.I. Guo, Z.-Z. Xing, Phys. Lett. B 583, 163 (2004)

    Article  ADS  Google Scholar 

  12. S.T. Petcov, W. Rodejohann, Phys. Rev. D 71, 073002 (2005)

    Article  ADS  Google Scholar 

  13. R.N. Mohapatra, W. Rodejohann, Phys. Rev. D 72, 053001 (2005)

    Article  ADS  Google Scholar 

  14. S. Antusch, S.F. King, Phys. Lett. B 631, 42 (2005)

    Article  ADS  Google Scholar 

  15. Z.-Z. Xing, H. Zhang, S. Zhou, Phys. Lett. B 641, 189 (2006)

    Article  ADS  Google Scholar 

  16. J. Harada, Europhys. Lett. 75, 248 (2006)

    Article  ADS  Google Scholar 

  17. R.N. Mohapatra, H.-B. Yu, Phys. Lett. B 644, 346 (2007)

    Article  ADS  Google Scholar 

  18. Z.-Z. Xing, H. Zhang, S. Zhou, Int. J. Mod. Phys. A 23, 3384 (2008)

    Article  ADS  Google Scholar 

  19. S.-F. Ge, D.A. Dicus, W.W. Repko, Phys. Lett. B 702, 220 (2011)

    Article  ADS  Google Scholar 

  20. D. Marzocca, S.T. Petcov, A. Romanino, M. Spinrath, JHEP 1111, 009 (2011)

    Article  ADS  Google Scholar 

  21. H.-J. He, F.-R. Yin, Phys. Rev. D 84, 033009 (2011)

    Article  ADS  Google Scholar 

  22. C. Duarah, A. Das, N.N. Singh, Phys. Rev. D 84, 033009 (2011). (arXiv:1210.8265)

  23. N. Razzaghi, S.S. Gousheh, Phys. Rev. D 86, 053006 (2012)

    Article  ADS  Google Scholar 

  24. Y. Shimizu, M. Tanimoto, Phys. Rev. D 86, 053006 (2012). (arXiv:1405.1521)

  25. Y.H. Ahn, S.K. Kang, C.S. Kim, Phys. Rev. D 87, 113012 (2013)

    Article  ADS  Google Scholar 

  26. Y.H. Ahn, S.K. Kang, Phys. Rev. D 86, 093003 (2012)

    Article  ADS  Google Scholar 

  27. S.K. Kang, J. Korean Phys. Soc. 71, 911 (2017)

    Article  ADS  Google Scholar 

  28. S.K. Kang, C.S. Kim, Phys. Rev. D 90, 077301 (2014)

    Article  ADS  Google Scholar 

  29. S.K. Kang, M. Tanimoto, Phys. Rev. D 91, 073010 (2015)

    Article  ADS  Google Scholar 

  30. S.K. Kang, Y. Shimizu, K. Takagi, S. Takahashi, M. Tanimoto, PTEP 2018, 083B01 (2018)

  31. B. Pontecorvo, Sov. Phys. JETP 6, 429 (1957)

    ADS  Google Scholar 

  32. B. Pontecorvo, Sov. Phys. JETP 26, 984 (1968)

    ADS  Google Scholar 

  33. Z. Maki, M. Nakagawa, S. Sakata, Prog. Theor. Phys. 28, 870 (1962)

    Article  ADS  Google Scholar 

  34. Particle Data Group, http://pdg.lbl.gov

  35. J. Beringer et al., Phys. Rev. D 86, 010001 (2012)

    Article  ADS  Google Scholar 

  36. S.R. Elliott, P. Vogel, Ann. Rev. Nucl. Phys. Sci. 52, 115 (2002). (and references therein)

    Article  ADS  Google Scholar 

  37. M. Fukugita, T. Yanagida, Phys. Lett. B 174, 45 (1986)

    Article  ADS  Google Scholar 

  38. S. Davidson, A. Ibarra, Phys. Lett. B 535, 25 (2002). ([hep-ph/0202239])

    Article  ADS  Google Scholar 

  39. P.H. Frampton, S.L. Glashow, T. Yanagida, Phys. Lett. B 548, 119 (2002). ([hep-ph/0208157])

    Article  ADS  Google Scholar 

  40. M. Raidal, A. Strumia, Phys. Lett. B 553, 72 (2003)

    Article  ADS  Google Scholar 

  41. W.I. Guo, Z.-Z. Xing, Phys. Lett. B 583, 163 (2004)

    Article  ADS  Google Scholar 

  42. T. Endoh, S. Kaneko, S.K. Kang, T. Morozumi, M. Tanimoto, Phys. Rev. Lett. 89, 231601 (2002)

    Article  ADS  Google Scholar 

  43. S.K. Kang, PoS ICRC 2017, 1063 (2018)

    Google Scholar 

  44. T. Endoh, S. Kaneko, S.K. Kang, T. Morozumi, M. Tanimoto, J. Phys. G 29, 1877 (2003)

    Article  ADS  Google Scholar 

  45. S. Chang, S.K. Kang, K. Siyeon, Phys. Lett. B 597, 78 (2004)

    Article  ADS  Google Scholar 

  46. T. Fujihara, S. Kaneko, S.K. Kang, D. Kimura, T. Morozumi, M. Tanimoto, Phys. Rev. D 72, 016006 (2005)

    Article  ADS  Google Scholar 

  47. Z.-Z. Xing, S. Zhou, Phys. Lett. B 653, 278 (2007)

    Article  ADS  Google Scholar 

  48. W.I. Guo, Z.-Z. Xing, S. Zhou, Int. J. Mod. Phys. E 16, 1 (2007)

    Article  ADS  Google Scholar 

  49. T. Kitabayashi, Phys. Rev. D 76, 033002 (2007)

    Article  ADS  Google Scholar 

  50. Z.-Z. Xing, S. Zhou, Int. J. Mod. Phys. A 23, 3403 (2008)

    Article  ADS  Google Scholar 

  51. K. Siyeon, J. Korean Phys. Soc. 69, 1638 (2016)

    Article  ADS  Google Scholar 

  52. S. Weinberg, Trans. NY Acad. Sci. 38, 185 (1977)

    Article  Google Scholar 

  53. P. Minkowski, Phys. Lett. B 67, 421 (1977)

    Article  ADS  Google Scholar 

  54. M. Gell-Mann, P. Ramond, R. Slansky, Conf. Proc. C 790927, 315–321 (1979)

    Google Scholar 

  55. T. Yanagida, Prog. Theor. Phys. 64, 1103 (1980)

    Article  ADS  Google Scholar 

  56. R.N. Mohapatra, G. Senjanovic, Phys. Rev. Lett. 44, 912 (1980)

    Article  ADS  Google Scholar 

  57. J. Schechter, J.W.F. Valle, Phys. Rev. D 22, 2227 (1980)

    Article  ADS  Google Scholar 

  58. L. Covi, E. Roulet, F. Vissani, Phys. Lett. B 384, 169 (1996)

    Article  ADS  Google Scholar 

  59. S. Lee, S.K. Kang, New Phys. Sae Mulli 67, 267 (2017)

    Article  Google Scholar 

  60. W. Buchmuller, P. Di Bari, M. Plumacher, Annals Phys. 315, 305 (2005)

    Article  ADS  Google Scholar 

  61. H. Fritzsch, Z.-Z. Xing, S. Zhou, JHEP 09, 083 (2011)

    Article  ADS  Google Scholar 

  62. D. Meloni, A. Meroni, E. Peinado, Phys. Rev. D 89, 053009 (2014)

    Article  ADS  Google Scholar 

  63. S. Zhou, Chin. Phys. C 40, 033102 (2016)

    Article  ADS  Google Scholar 

  64. M. Singh, G. Ahuja, M. Gupta, PTEP 2016, 12, 123B08 (2016)

  65. S. Dev, R.R. Gautam, L. Singh, M. Gupta, Phys. Rev. D 90, 013021 (2014)

    Article  ADS  Google Scholar 

  66. Y.H. Ahn, S.K. Kang, C.S. Kim, J. Lee, Phys. Rev. D 77, 073009 (2008)

    Article  ADS  Google Scholar 

  67. S.K. Kang, C.S. Kim, Phys. Rev. D 63, 113010 (2001)

    Article  ADS  Google Scholar 

  68. K. Kang, S.K. Kang, U. Sarkar, Phys. Lett. B 486, 391 (2000)

    Article  ADS  Google Scholar 

  69. K. Kang, S.K. Kang, Phys. Rev. D 56, 1511 (1997)

    Article  ADS  Google Scholar 

  70. P.A.R. Ade et al., Planck Collaboration. Astron. Astrophys. 594, A13 (2016)

    Google Scholar 

  71. E.W. Kolb, M.S. Turner, The Early Universe (Addison-Wesley, c.+y, 1990)

Download references

Acknowledgements

This work was supported by the Research Program funded by the Seoul Tech (Seoul National University of Science and Technology).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sin Kyu Kang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, S.K. Low-energy CP violation and leptogenesis in a minimal seesaw model. J. Korean Phys. Soc. 78, 743–749 (2021). https://doi.org/10.1007/s40042-021-00117-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00117-y

Keywords

Navigation