Average fidelity and fidelity deviation in noisy quantum teleportation

Abstract

We analyze the average fidelity (say, F) and the fidelity deviation (say, D) in noisy-channel quantum teleportation. Here, F represents how well teleportation is performed on average and D quantifies whether the teleportation is performed impartially on the given inputs, that is, the condition of universality. Our analysis results prove that the achievable maximum average fidelity ensures zero fidelity deviation, that is, perfect universality. This structural trait of teleportation is distinct from those of other limited-fidelity probabilistic quantum operations, for instance, universal-NOT or quantum cloning. This feature is confirmed again based on a tighter relationship between F and D in the qubit case. We then consider another realistic noise model where F decreases and D increases due to imperfect control. To alleviate such deterioration, we propose a machine-learning-based algorithm. We demonstrate by means of numerical simulations that the proposed algorithm can stabilize the system. Notably, the recovery process consists solely of the maximization of F, which reduces the control time, thus leading to a faster cure cycle.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W.K. Wootters, Phys. Rev. Lett. 70, 1895 (1993)

    ADS  MathSciNet  Article  Google Scholar 

  2. 2.

    S. Popescu, Phys. Rev. Lett. 72, 797 (1994)

    ADS  MathSciNet  Article  Google Scholar 

  3. 3.

    N. Gisin, Phys. Lett. A 210, 157 (1996)

    ADS  MathSciNet  Article  Google Scholar 

  4. 4.

    J. Barrett, Phys. Rev. A 64, 042305 (2001)

    ADS  MathSciNet  Article  Google Scholar 

  5. 5.

    D. Cavalcanti, A. Acín, N. Brunner, T. Vértesi, Phys. Rev. A 87, 042104 (2013)

    ADS  Article  Google Scholar 

  6. 6.

    H. Jeong, M.S. Kim, Phys. Rev. A 65, 042305 (2002)

    ADS  Article  Google Scholar 

  7. 7.

    T.C. Ralph, A. Gilchrist, G.J. Milburn, W.J. Munro, S. Glancy, Phys. Rev. A 68, 042319 (2003)

    ADS  Article  Google Scholar 

  8. 8.

    J. Bang, S.-W. Lee, H. Jeong, J. Lee, Phys. Rev. A 86, 062317 (2012)

    ADS  Article  Google Scholar 

  9. 9.

    J. Bang, J. Ryu, D. Kaszlikowski, J. Phys. A Math. Theor. 51, 135302 (2018)

    ADS  Article  Google Scholar 

  10. 10.

    R. Jozsa, J. Mod. Opt. 41, 2315 (1994)

    ADS  Article  Google Scholar 

  11. 11.

    V. Bužek, M. Hillery, R.F. Werner, Phys. Rev. A 60, 2626 (1999)

    ADS  MathSciNet  Article  Google Scholar 

  12. 12.

    V. Bužek, M. Hillery, R.F. Werner, J. Mod. Opt. 47, 211 (2000)

    ADS  Article  Google Scholar 

  13. 13.

    V. Bužek, M. Hillery, Phys. Rev. A 54, 1844 (1996)

    ADS  MathSciNet  Article  Google Scholar 

  14. 14.

    S.L. Braunstein, G.M. D’Ariano, G.J. Milburn, M.F. Sacchi, Phys. Rev. Lett. 84, 3486 (2000)

    ADS  Article  Google Scholar 

  15. 15.

    W. Son, J. Lee, M.S. Kim, Y.-J. Park, Phys. Rev. A 64, 064304 (2001)

    ADS  Article  Google Scholar 

  16. 16.

    M. Horodecki, P. Horodecki, R. Horodecki, Phys. Rev. A 60, 1888 (1999)

    ADS  MathSciNet  Article  Google Scholar 

  17. 17.

    A.R.R. Carvalho, F. Mintert, A. Buchleitner, Phys. Rev. Lett. 93, 230501 (2004)

    ADS  Article  Google Scholar 

  18. 18.

    N. Burić, Phys. Rev. A 77, 012321 (2008)

    ADS  Article  Google Scholar 

  19. 19.

    R.F. Werner, Phys. Rev. A 40, 4277 (1989)

    ADS  Article  Google Scholar 

  20. 20.

    S. Albeverio, S.-M. Fei, W.-L. Yang, Phys. Rev. A 66, 012301 (2002)

    ADS  Article  Google Scholar 

  21. 21.

    R. Bhatia, C. Davis, Commun. Math. Phys. 215, 239 (2000)

    ADS  Article  Google Scholar 

  22. 22.

    F.T. Hioe, J.H. Eberly, Phys. Rev. Lett. 47, 838 (1981)

    ADS  MathSciNet  Article  Google Scholar 

  23. 23.

    W. Son, J. Lee, M.S. Kim, J. Phys. A 37, 11897 (2004)

    ADS  MathSciNet  Article  Google Scholar 

  24. 24.

    J. Bang, J. Lim, S. Yoo, M. S. Kim, J. Lee, arXiv:0803.2976 (2008)

  25. 25.

    M. Reck, A. Zeilinger, H.J. Bernstein, P. Bertani, Phys. Rev. Lett. 73, 58 (1994)

    ADS  Article  Google Scholar 

  26. 26.

    J. Kim, J. Lee, S. Lee, Phys. Rev. A. 61, 032312 (2000)

    ADS  MathSciNet  Article  Google Scholar 

  27. 27.

    L. Viola, E. Knill, S. Lloyd, Phys. Rev. Lett. 82, 2417 (1999)

    ADS  MathSciNet  Article  Google Scholar 

  28. 28.

    N. Khaneja, R. Brockett, S.J. Glaser, Phys. Rev. A 63, 032308 (2001)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

JB thanks to M. Wieśniak and T. Vértesi for discussions. WS and JB thank to the financial support of the National Research Foundation (NRF) of Korea Grants (no. 2019R1A2C2005504 and no. NRF-2019M3E4A1079666), funded by the MSIP (Ministry of Science, ICT and Future Planning), Korea government. JR acknowledges the National Research Foundation of Korea (NRF) Grants (no. NRF-2020M3E4A1079792). JB and KB was supported by KIAS Individual Grants (no. CG061003 and no. CG074701), respectively. JB and KB was supported by the NRF Grant funded by the Korea government (MSIT) (no. 2020M3E4A1079939).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jeongho Bang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Wooyeong Song and Junghee Ryu contributed equally to this work.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Song, W., Ryu, J., Baek, K. et al. Average fidelity and fidelity deviation in noisy quantum teleportation. J. Korean Phys. Soc. 78, 496–503 (2021). https://doi.org/10.1007/s40042-021-00097-z

Download citation

Keywords

  • Quantum teleportation
  • Quantum machine learning