Evaluation of brain function during different types of breathing using FDG-PET compared with using BOLD-fMRI


Mouth breathing can occur due to obstructive, habitual, or anatomical factors, and it causes various side effects such as decreased blood oxygen saturation, respiratory diseases, skeletal disorders in the facial area, decreased concentration, and sleep disorders. However, previous studies on these side effects of mouth breathing have mainly focused on structural changes. Because oxygen and glucose are essential for brain metabolism, studies on their changes due to mouth breathing have been required. Therefore, this study was to investigate the activation of brain regions during different types of breathing (nasal and mouth breathing) using fluorodeoxyglucose (FDG) positron emission tomography (PET) and blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI). FDG-PET and BOLD-fMRI data were obtained from ten healthy subjects. Image pre-processing and group analysis were conducted using statistical parametric mapping (SPM12). FDG-PET showed that cerebral areas, such as middle frontal, superior and inferior parietal and inferior frontal gyrus, were highly active during nasal breathing and that the cerebellar areas were highly active during mouth breathing. BOLD-fMRI showed that the inferior occipital and the superior frontal gyrus, and the gyrus rectus were highly active during nasal breathing. This study confirmed that mouth breathing interferes with the normal functioning of the cerebrum, such as its metabolism, thereby reducing the activations of the olfactory, autonomic nervous system, as well as the default mode network. These, along with structural changes, may cause deteriorations in brain functions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    G.J. Tortora, N.P. Anagnostakos, Principles of Anatomy and Physiology, 5th edn. (Harper & Row, New York, 1987).

    Google Scholar 

  2. 2.

    H. Gray, P.L. Williams (eds.), Gray’s Anatomy, 37th edn. (Churchill Livingstone, Edinburgh, 1989)

    Google Scholar 

  3. 3.

    J.L. Paul, R.S. Nanda, Angle Orthod. 43, 201 (1973)

    Google Scholar 

  4. 4.

    B.S. Phulari, Orthodontics: Principles and Practice (JP Medical Ltd, New Delhi, 2011).

    Google Scholar 

  5. 5.

    D. Bresolin, G.G. Shapiro, P.A. Shapiro, S.W. Dassel, C.T. Furukawa, W.E. Pierson, M. Chapko, C.W. Bierman, Pediatrics 73, 622 (1984)

    Google Scholar 

  6. 6.

    Y. Izuhara, H. Matsumoto, T. Nagasaki, Y. Kanemitsu, K. Murase, I. Ito, T. Oguma, S. Muro, K. Asai, Y. Tabara, K. Takahashi, K. Bessho, A. Sekine, S. Kosugi, R. Yamada, T. Nakayama, F. Matsuda, A. Niimi, K. Chin, M. Mishima, Nagahama Study Group, Allergy 71, 1031 (2016)

    Article  Google Scholar 

  7. 7.

    R.B. Mitchell, Eur. Respir. J. 25, 216 (2005)

    Article  Google Scholar 

  8. 8.

    S. Hadjikoutis, T.P. Pickersgill, K. Dawson, C.M. Wiles, Brain 123, 1863 (2000)

    Article  Google Scholar 

  9. 9.

    M. Sano, S. Sano, N. Oka, K. Yoshino, T. Kato, Neuro Rep. 24, 935 (2013)

    Google Scholar 

  10. 10.

    C.-A. Park, C.-K. Kang, J. Korean Phys. Soc. 70, 1070 (2017)

    ADS  Article  Google Scholar 

  11. 11.

    C.-G. Lim, Phys. Ther. Rehabil. Sci. 9, 25 (2020)

    Article  Google Scholar 

  12. 12.

    K.-J. Lee, C.-A. Park, Y.-B. Lee, H.-K. Kim, C.-K. Kang, Int. J. Neurosci. 130, 425 (2020)

    Article  Google Scholar 

  13. 13.

    D.L. Bailey (ed.), Positron Emission Tomography: Basic Sciences (Springer, New York, 2005)

    Google Scholar 

  14. 14.

    J.S. Damoiseaux, C.F. Beckmann, E.J.S. Arigita, F. Barkhof, Ph. Scheltens, C.J. Stam, S.M. Smith, S.A.R.B. Rombouts, Cereb. Cortex 18, 1856 (2008)

    Article  Google Scholar 

  15. 15.

    D. Tomasi, G.-J. Wang, N.D. Volkow, Proc. Natl. Acad. Sci. 110, 13642 (2013)

    ADS  Article  Google Scholar 

  16. 16.

    S. Zhang, C.R. Li, NeuroImage 59, 3548 (2012)

    Article  Google Scholar 

  17. 17.

    S. Japee, K. Holiday, M.D. Satyshur, I. Mukai, L.G. Ungerleider, Front. Syst. Neurosci. 9, 23 (2015)

    Article  Google Scholar 

  18. 18.

    M. Wallentin, A. Roepstorff, R. Glover, N. Burgess, NeuroImage 32, 1850 (2006)

    Article  Google Scholar 

  19. 19.

    K. Denys, W. Vanduffel, D. Fize, K. Nelissen, H. Peuskens, D. Van Essen, G.A. Orban, J. Neurosci. 24, 2551 (2004)

    Article  Google Scholar 

  20. 20.

    T.W. Kjaer, M. Nowak, H.C. Lou, NeuroImage 17, 1080 (2002)

    Article  Google Scholar 

  21. 21.

    J. Wang, Y. Yang, L. Fan, J. Xu, C. Li, Y. Liu, P.T. Fox, S.B. Eickhoff, C. Yu, T. Jiang, Hum. Brain Mapp. 36, 238 (2015)

    Article  Google Scholar 

  22. 22.

    E. Marx, A. Deutschländer, T. Stephan, M. Dieterich, M. Wiesmann, T. Brandt, NeuroImage 21, 1818 (2004)

    Article  Google Scholar 

  23. 23.

    M. Wiesmann, R. Kopietz, J. Albrecht, J. Linn, U. Reime, E. Kara, O. Pollatos, V. Sakar, A. Anzinger, G. Fesl, H. Brückmann, G. Kobal, T. Stephan, NeuroImage 32, 293 (2006)

    Article  Google Scholar 

  24. 24.

    C. Gross, Scholarpedia 3, 7294 (2008)

    ADS  Article  Google Scholar 

  25. 25.

    R.J. Zatorre, M. Jones-Gotman, Brain 114, 71 (1991)

    Article  Google Scholar 

  26. 26.

    W. Di Nardo, S. Di Girolamo, A. Galli, G. Meduri, G. Paludetti, G. De Rossi, Am. J. Rhinol. 14, 57 (2000)

    Article  Google Scholar 

  27. 27.

    H. Gould 3rd., C.G. Cusick, T.P. Pons, J.H. Kaas, J. Comp. Neurol. 247, 297 (1986)

    Article  Google Scholar 

  28. 28.

    A.R. Mitz, S.P. Wise, J. Neurosci. 7, 1010 (1987)

    Article  Google Scholar 

  29. 29.

    C.-B. Rivara, C.C. Sherwood, C. Bouras, P.R. Hof, Am. Assoc. Anat. 270, 137 (2003)

    Google Scholar 

  30. 30.

    C. Stoodley, J. Schmahmann, NeuroImage 44, 489 (2009)

    Article  Google Scholar 

  31. 31.

    D.C. Page, D. Mahony, Todays FDA Off. Mon. J. Fla. Dent. Assoc. 22, 43 (2010)

    Google Scholar 

  32. 32.

    J.-H. Moon, J.-H. Jung, H.-Y. Cho, Medico Leg Update 20, 1976 (2020)

    Google Scholar 

  33. 33.

    V. Menon, Trends Cogn. Sci. 15, 483 (2011)

    Article  Google Scholar 

Download references


This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2015R1C1A1A02036462) and the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (MSIT) of the Republic of Korea (Grant number: NRF-2020R1A2C1004355).

Author information



Corresponding author

Correspondence to Chang-Ki Kang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Park, C., Park, CA. & Kang, CK. Evaluation of brain function during different types of breathing using FDG-PET compared with using BOLD-fMRI. J. Korean Phys. Soc. 78, 542–549 (2021). https://doi.org/10.1007/s40042-021-00078-2

Download citation


  • Mouth breathing
  • DMN