Stable chimeras of non-locally coupled Kuramoto–Sakaguchi oscillators in a finite array

Abstract

We consider chimera states of coupled identical phase oscillators where some oscillators are phase synchronized (have the same phase) while others are desynchronized. Chimera states of non-locally coupled Kuramoto–Sakaguchi oscillators in arrays of finite size are known to be chaotic transients; after a transient time, all the oscillators are phase synchronized, with the transient time increasing exponentially with the number of oscillators. In this work, we consider a small array of six non-locally coupled Kuramoto–Sakaguchi oscillators and modify the range of the phase lag parameter to destabilize their complete phase synchronization. Under these circumstances, we observe a chimera state spontaneously formed by the partition of oscillators into two independently synchronizable clusters of both stable and unstable synchronous states. In the chimera state, the trajectory of the phase differences of the desynchronized oscillators relative to the synchronous cluster is a stable periodic orbit, and as a result, the chimera state is a stable but not long-lived transient. We observe the chimera state with random initial conditions in a restricted range of the phase lag parameter and clarify why the state is observable in the restricted range using Floquet theory for periodic orbit stability.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    M.J. Panaggio, D.M. Abrams, Nonlinearity 28, R67 (2015)

    ADS  Article  Google Scholar 

  2. 2.

    O.E. Omel’chenko, Nonlinearity 31, R121 (2018)

    ADS  MathSciNet  Article  Google Scholar 

  3. 3.

    Y. Kuramoto, D. Battogtokh, Nonlinear Phenom. Complex Syst. 5, 380 (2002)

    Google Scholar 

  4. 4.

    D.M. Abrams, S.H. Strogatz, Phys. Rev. Lett. 93, 174102 (2004)

    ADS  Article  Google Scholar 

  5. 5.

    D.M. Abrams, S.H. Strogatz, Int. J. Bifurcation Chaos Appl. Sci. Eng. 16(1), 21 (2006)

    Article  Google Scholar 

  6. 6.

    D.M. Abrams, R. Mirollo, S.H. Strogatz, D.A. Wiley, Phys. Rev. Lett. 101, 084103 (2008)

    ADS  Article  Google Scholar 

  7. 7.

    O.E. Omel’chenko, M. Wolfrum, Y.L. Maistrenko, Phys. Rev. E 81, 065201(R) (2010)

    ADS  MathSciNet  Article  Google Scholar 

  8. 8.

    M. Wolfrum, O.E. Omel’chenko, Phys. Rev. E 84, 015201(R) (2011)

    ADS  Article  Google Scholar 

  9. 9.

    P. Ashwin, O. Burylko, Chaos 25, 013106 (2015)

    ADS  MathSciNet  Article  Google Scholar 

  10. 10.

    M. Thoubaan, P. Ashwin, Chaos 28, 103121 (2018)

    ADS  MathSciNet  Article  Google Scholar 

  11. 11.

    C. Bick, P. Ashwin, Nonlinearity 29, 1468 (2016)

    ADS  MathSciNet  Article  Google Scholar 

  12. 12.

    Y. Maistrenko et al., Phys. Rev. E 95, 010203(R) (2017)

    ADS  Article  Google Scholar 

  13. 13.

    Y. Suda, K. Okuda, Phys. Rev. E 92, 060901(R) (2015)

    ADS  Article  Google Scholar 

  14. 14.

    M.J. Panaggio, D.M. Abrams, P. Ashwin, C.R. Laing, Phys. Rev. E 93, 012218 (2016)

    ADS  Article  Google Scholar 

  15. 15.

    N.I. Semenova, G.I. Strelkova, V.S. Anishchenko, A. Zakharova, Chaos 27, 061102 (2017)

    ADS  MathSciNet  Article  Google Scholar 

  16. 16.

    A.E. Botha, Sci. Rep. 6, 29213 (2016)

    ADS  Article  Google Scholar 

  17. 17.

    Y.S. Cho, T. Nishikawa, A.E. Motter, Phys. Rev. Lett. 119, 084101 (2017)

    ADS  Article  Google Scholar 

  18. 18.

    M. Wolfrum, O.E. Omel’chenko, S. Yanchuk, Y.L. Maistrenko, Chaos 21, 013112 (2011)

    ADS  MathSciNet  Article  Google Scholar 

  19. 19.

    G. Bordyugov, A. Pikovsky, M. Rosenblum, Phys. Rev. E 82, 035205(R) (2010)

    ADS  MathSciNet  Article  Google Scholar 

  20. 20.

    O.E. Omel’chenko, Nonlinearity 26, 2469 (2013)

    ADS  MathSciNet  Article  Google Scholar 

  21. 21.

    A. Mihara, R.O. Medrano-T, Nonlinear Dyn. 98, 539 (2019)

    Article  Google Scholar 

  22. 22.

    I. Omelchenko, Y. Maistrenko, P. Hövel, E. Schöll, Phys. Rev. Lett. 106, 234102 (2011)

    ADS  Article  Google Scholar 

  23. 23.

    K. Höhlein, F.P. Kemeth, K. Krischer, Phys. Rev. E 100, 022217 (2019)

    ADS  MathSciNet  Article  Google Scholar 

  24. 24.

    A.M. Hagerstrom et al., Nat. Phys. 8, 658 (2012)

    Article  Google Scholar 

  25. 25.

    M.R. Tinsley, S. Nkomo, K. Showalter, Nat. Phys. 8, 662 (2012)

    Article  Google Scholar 

  26. 26.

    E.A. Martens, S. Thutupalli, A. Fourrière, O. Hallatschek, Proc. Natl. Acad. Sci. USA 110, 10563 (2013)

    ADS  Article  Google Scholar 

  27. 27.

    C. Meena, K. Murali, S. Sinha, Int. J. Bifurcation Chaos 26, 1630023 (2016)

    ADS  Article  Google Scholar 

  28. 28.

    J.D. Hart, K. Bansal, T.E. Murphy, R. Roy, Chaos 26, 094801 (2016)

    ADS  MathSciNet  Article  Google Scholar 

  29. 29.

    D.P. Rosin et al., Phys. Rev. E 90, 030902(R) (2014)

    ADS  Article  Google Scholar 

  30. 30.

    A. Banerjee, D. Sikder, Phys. Rev. E 98, 032220 (2018)

    ADS  Article  Google Scholar 

  31. 31.

    F. Böhm, A. Zakharova, E. Schöll, K. Lüdge, Phys. Rev. E 91, 040901(R) (2015)

    ADS  Article  Google Scholar 

  32. 32.

    A. Röhm, F. Böhm, K. Lüdge, Phys. Rev. E 94, 042204 (2016)

    ADS  Article  Google Scholar 

  33. 33.

    L. Larger, B. Penkovsky, Y. Maistrenko, Nat. Commun. 6, 7752 (2015)

    ADS  Article  Google Scholar 

  34. 34.

    J. Wojewoda, K. Czolczynski, Y. Maistrenko, T. Kapitaniak, Sci. Rep. 6, 34329 (2016)

    ADS  Article  Google Scholar 

  35. 35.

    M.H. Matheny et al., Science 363, eaav7932 (2019)

    MathSciNet  Article  Google Scholar 

  36. 36.

    F.P. Kemeth et al., Chaos 26, 094815 (2016)

    ADS  Article  Google Scholar 

  37. 37.

    H. Sakaguchi, Y. Kuramoto, Prog. Theor. Phys. 76, 576 (1986)

    ADS  Article  Google Scholar 

  38. 38.

    V. Nicosia et al., Phys. Rev. Lett. 110, 174102 (2013)

    ADS  Article  Google Scholar 

  39. 39.

    L.M. Pecora et al., Nat. Commun. 5, 4079 (2014)

    ADS  Article  Google Scholar 

  40. 40.

    F. Sorrentino et al., Sci. Adv. 2, e1501737 (2016)

    ADS  Article  Google Scholar 

  41. 41.

    P.J. Menck, J. Heitzig, N. Marwan, J. Kurths, Nat. Phys. 9, 89 (2013)

    Article  Google Scholar 

  42. 42.

    L. Perko, Differential Equations and Dynamical Systems, 2nd edn. (Springer, Berlin, 1996)

    MATH  Book  Google Scholar 

  43. 43.

    C. Bick et al., Phys. Rev. Lett. 107, 244101 (2011)

    ADS  Article  Google Scholar 

  44. 44.

    B.D. MacArthur, R.J. Sánchez-García, J.W. Anderson, Discrete Appl. Math. 156, 3525 (2008)

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Research Foundation of Korea (NRF) Grant (No. 2017R1C1B1004292 and No. 2020R1F1A1061326).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Young Sul Cho.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, S., Cho, Y.S. Stable chimeras of non-locally coupled Kuramoto–Sakaguchi oscillators in a finite array. J. Korean Phys. Soc. 78, 476–481 (2021). https://doi.org/10.1007/s40042-021-00068-4

Download citation

Keywords

  • Chimera state
  • Cluster synchronization
  • Non-locally coupled Kuramoto–Sakaguchi oscillators